Learning with kernels : support vector machines, regularization, optimization, and beyond
In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks....
Ausführliche Beschreibung
Autor*in: |
Schölkopf, Bernhard [verfasserIn] Smola, Alexander J. [mitwirkender] |
---|
Format: |
E-Book |
---|---|
Sprache: |
Englisch |
Erschienen: |
Cambridge, Massachusetts: MIT Press ; c2002 |
---|
Schlagwörter: |
Maschinelles Lernen / Support-Vektor-Maschine Maschinelles Lernen / Kernel, Informatik / Support-Vektor-Maschine |
---|---|
Schlagwörter: |
Systematik: |
|
---|
Anmerkung: |
Includes bibliographical references (p. [591]-616) and index. - Description based on PDF viewed 12/23/2015 |
---|---|
Umfang: |
1 PDF (xviii, 626 pages) ; illustrations. |
Beschreibung: |
Mode of access: World Wide Web. |
Weitere Ausgabe: |
Erscheint auch als Druck-Ausgabe Schölkopf, Bernhard, 1968 -: Learning with kernels - Cambridge, Massachusetts : MIT Press, 2002 |
---|
Reihe: |
Adaptive computation and machine learning series |
---|
Links: | |
---|---|
ISBN: |
978-0-262-25693-3 |
Katalog-ID: |
1727350464 |
---|
LEADER | 01000cam a22002652 4500 | ||
---|---|---|---|
001 | 1727350464 | ||
003 | DE-627 | ||
005 | 20220729123159.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200818s2001 xx |||||o 00| ||eng c | ||
020 | |a 9780262256933 |c ebook |9 978-0-262-25693-3 | ||
035 | |a (DE-627)1727350464 | ||
035 | |a (DE-599)KEP055118526 | ||
035 | |a (OCoLC)1196123268 | ||
035 | |a (MITPRESS)6267332 | ||
035 | |a (EBP)055118526 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/1 |2 21 | |
082 | 0 | |a 006.3/1 |2 22 | |
084 | |a ST 300 |q SEPA |2 rvk |0 (DE-625)rvk/143650: | ||
084 | |a ST 278 |q SEPA |2 rvk |0 (DE-625)rvk/143644: | ||
084 | |a ST 304 |q SEPA |2 rvk |0 (DE-625)rvk/143653: | ||
084 | |a 54.72 |2 bkl | ||
084 | |a 31.80 |2 bkl | ||
100 | 1 | |a Schölkopf, Bernhard |e verfasserin |4 aut | |
245 | 1 | 0 | |a Learning with kernels |b support vector machines, regularization, optimization, and beyond |c Bernhard Schölkopf, Alexander J. Smola |
264 | 1 | |a Cambridge, Massachusetts |b MIT Press |c c2002 | |
300 | |a 1 PDF (xviii, 626 pages) |b illustrations. | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a Adaptive computation and machine learning series | |
500 | |a Includes bibliographical references (p. [591]-616) and index. - Description based on PDF viewed 12/23/2015 | ||
520 | |a In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics.Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years. | ||
538 | |a Mode of access: World Wide Web. | ||
650 | 4 | |a Machine learning | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Kernel functions | |
689 | 0 | 0 | |D s |0 (DE-588)4193754-5 |0 (DE-627)105224782 |0 (DE-576)21008944X |a Maschinelles Lernen |2 gnd |
689 | 0 | 1 | |D s |0 (DE-588)4505517-8 |0 (DE-627)245346708 |0 (DE-576)213125757 |a Support-Vektor-Maschine |2 gnd |
689 | 0 | |5 DE-101 | |
689 | 1 | 0 | |D s |0 (DE-588)4193754-5 |0 (DE-627)105224782 |0 (DE-576)21008944X |a Maschinelles Lernen |2 gnd |
689 | 1 | 1 | |D s |0 (DE-588)4338679-9 |0 (DE-627)152412972 |0 (DE-576)211390577 |a Kernel |g Informatik |2 gnd |
689 | 1 | 2 | |D s |0 (DE-588)4505517-8 |0 (DE-627)245346708 |0 (DE-576)213125757 |a Support-Vektor-Maschine |2 gnd |
689 | 1 | |5 (DE-627) | |
700 | 1 | |a Smola, Alexander J. |e mitwirkender |4 ctb | |
776 | 1 | |z 9780262194754 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780262194754 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Schölkopf, Bernhard, 1968 - |t Learning with kernels |d Cambridge, Massachusetts : MIT Press, 2002 |h xviii, 626 Seiten |w (DE-627)345507118 |z 0262194759 |z 9780262194754 |z 9780262536578 |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/book/6267332 |m X:MITPRESS |x Verlag |z lizenzpflichtig |
912 | |a ZDB-37-IEM |b 2012 | ||
912 | |a GBV_ILN_22 | ||
912 | |a ISIL_DE-18 | ||
912 | |a SYSFLAG_1 | ||
912 | |a GBV_KXP | ||
912 | |a GBV_ILN_22_i22818 | ||
912 | |a GBV_ILN_23 | ||
912 | |a ISIL_DE-830 | ||
912 | |a GBV_ILN_100 | ||
912 | |a ISIL_DE-Ma9 | ||
912 | |a GBV_ILN_370 | ||
912 | |a ISIL_DE-1373 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a ISIL_DE-93 | ||
936 | r | v | |a ST 300 |b Allgemeines |k Informatik |k Monografien |k Künstliche Intelligenz |k Allgemeines |0 (DE-627)1271119005 |0 (DE-625)rvk/143650: |0 (DE-576)201119005 |
936 | r | v | |a ST 278 |b Mensch-Maschine-Kommunikation Software-Ergonomie |k Informatik |k Monografien |k Software und -entwicklung |k Mensch-Maschine-Kommunikation Software-Ergonomie |0 (DE-627)1270879251 |0 (DE-625)rvk/143644: |0 (DE-576)200879251 |
936 | r | v | |a ST 304 |b Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation |k Informatik |k Monografien |k Künstliche Intelligenz |k Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation |0 (DE-627)1271584034 |0 (DE-625)rvk/143653: |0 (DE-576)201584034 |
936 | b | k | |a 54.72 |j Künstliche Intelligenz |q SEPA |0 (DE-627)10641240X |
936 | b | k | |a 31.80 |j Angewandte Mathematik |q SEPA |0 (DE-627)106419005 |
951 | |a BO | ||
953 | |2 045F |a 006.3/1 | ||
953 | |2 045F |a 006.3/1 | ||
980 | |2 22 |1 01 |x 0018 |b 3848476509 |h olrm-h228-MITIEEE |y zi22818 |z 03-02-21 | ||
980 | |2 23 |1 01 |x 0830 |b 3957242002 |h olr-MIT |u i |y z |z 23-07-21 | ||
980 | |2 100 |1 01 |x 3100 |b 4472469111 |c 09 |f --%%-- |d eBook MIT Press |e --%%-- |j --%%-- |h OLR-MIT-CEC |k Vervielfältigungen (z.B. Kopien, Downloads) sind nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots. |y z |z 30-01-24 | ||
980 | |2 370 |1 01 |x 4370 |b 4011223433 |h olr-ebook mitieee |k Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots. |u i |y z |z 01-12-21 | ||
980 | |2 2015 |1 01 |x DE-93 |b 3740752432 |c 00 |f --%%-- |d --%%-- |e p |j --%%-- |k Campuslizenz |y l01 |z 18-08-20 | ||
981 | |2 22 |1 01 |x 0018 |y Volltextzugang Campus |r https://ieeexplore.ieee.org/book/6267332 | ||
981 | |2 22 |1 01 |x 0018 |y Nur für Angehörige der Universität Hamburg: Volltextzugang von außerhalb des Campus |r http://emedien.sub.uni-hamburg.de/han/ieee/ieeexplore.ieee.org/book/6267332 | ||
981 | |2 23 |1 01 |x 0830 |y MIT Press EBook |r https://ieeexplore.ieee.org/book/6267332 | ||
981 | |2 100 |1 01 |x 3100 |r https://ieeexplore.ieee.org/book/6267332 | ||
981 | |2 100 |1 01 |x 3100 |y für Uniangehörige: Zugang weltweit |r http://han.med.uni-magdeburg.de/han/mitvia-ieee/ieeexplore.ieee.org/book/6267332 | ||
981 | |2 370 |1 01 |x 4370 |y E-Book: Zugriff im HCU-Netz. Zugriff von außerhalb nur für HCU-Angehörige möglich |r https://ieeexplore.ieee.org/book/6267332 | ||
981 | |2 2015 |1 01 |x DE-93 |r https://ieeexplore.ieee.org/book/6267332 | ||
985 | |2 23 |1 01 |x 0830 |a 2018-01805, 2018-01806, 2018-01808 | ||
995 | |2 22 |1 01 |x 0018 |a olrm-h228-MITIEEE | ||
995 | |2 23 |1 01 |x 0830 |a olr-MIT | ||
995 | |2 100 |1 01 |x 3100 |a OLR-MIT-CEC | ||
995 | |2 370 |1 01 |x 4370 |a olr-ebook mitieee | ||
998 | |2 370 |1 01 |x 4370 |0 2021.12.01 |
author_variant |
b s bs |
---|---|
matchkey_str |
book:9780262256933:2001---- |
oclc_num |
1196123268 |
hierarchy_sort_str |
c2002 |
bklnumber |
54.72 31.80 |
publishDate |
2001 |
allfields |
9780262256933 ebook 978-0-262-25693-3 (DE-627)1727350464 (DE-599)KEP055118526 (OCoLC)1196123268 (MITPRESS)6267332 (EBP)055118526 DE-627 ger DE-627 rda eng 006.3/1 21 006.3/1 22 ST 300 SEPA rvk (DE-625)rvk/143650: ST 278 SEPA rvk (DE-625)rvk/143644: ST 304 SEPA rvk (DE-625)rvk/143653: 54.72 bkl 31.80 bkl Schölkopf, Bernhard verfasserin aut Learning with kernels support vector machines, regularization, optimization, and beyond Bernhard Schölkopf, Alexander J. Smola Cambridge, Massachusetts MIT Press c2002 1 PDF (xviii, 626 pages) illustrations. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adaptive computation and machine learning series Includes bibliographical references (p. [591]-616) and index. - Description based on PDF viewed 12/23/2015 In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics.Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years. Mode of access: World Wide Web. Machine learning Algorithms Kernel functions s (DE-588)4193754-5 (DE-627)105224782 (DE-576)21008944X Maschinelles Lernen gnd s (DE-588)4505517-8 (DE-627)245346708 (DE-576)213125757 Support-Vektor-Maschine gnd DE-101 s (DE-588)4193754-5 (DE-627)105224782 (DE-576)21008944X Maschinelles Lernen gnd s (DE-588)4338679-9 (DE-627)152412972 (DE-576)211390577 Kernel Informatik gnd s (DE-588)4505517-8 (DE-627)245346708 (DE-576)213125757 Support-Vektor-Maschine gnd (DE-627) Smola, Alexander J. mitwirkender ctb 9780262194754 Erscheint auch als Druck-Ausgabe 9780262194754 Erscheint auch als Druck-Ausgabe Schölkopf, Bernhard, 1968 - Learning with kernels Cambridge, Massachusetts : MIT Press, 2002 xviii, 626 Seiten (DE-627)345507118 0262194759 9780262194754 9780262536578 https://ieeexplore.ieee.org/book/6267332 X:MITPRESS Verlag lizenzpflichtig ZDB-37-IEM 2012 GBV_ILN_22 ISIL_DE-18 SYSFLAG_1 GBV_KXP GBV_ILN_22_i22818 GBV_ILN_23 ISIL_DE-830 GBV_ILN_100 ISIL_DE-Ma9 GBV_ILN_370 ISIL_DE-1373 GBV_ILN_2015 ISIL_DE-93 ST 300 Allgemeines Informatik Monografien Künstliche Intelligenz Allgemeines (DE-627)1271119005 (DE-625)rvk/143650: (DE-576)201119005 ST 278 Mensch-Maschine-Kommunikation Software-Ergonomie Informatik Monografien Software und -entwicklung Mensch-Maschine-Kommunikation Software-Ergonomie (DE-627)1270879251 (DE-625)rvk/143644: (DE-576)200879251 ST 304 Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation Informatik Monografien Künstliche Intelligenz Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation (DE-627)1271584034 (DE-625)rvk/143653: (DE-576)201584034 54.72 Künstliche Intelligenz SEPA (DE-627)10641240X 31.80 Angewandte Mathematik SEPA (DE-627)106419005 BO 045F 006.3/1 045F 006.3/1 22 01 0018 3848476509 olrm-h228-MITIEEE zi22818 03-02-21 23 01 0830 3957242002 olr-MIT i z 23-07-21 100 01 3100 4472469111 09 --%%-- eBook MIT Press --%%-- --%%-- OLR-MIT-CEC Vervielfältigungen (z.B. Kopien, Downloads) sind nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots. z 30-01-24 370 01 4370 4011223433 olr-ebook mitieee Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots. i z 01-12-21 2015 01 DE-93 3740752432 00 --%%-- --%%-- p --%%-- Campuslizenz l01 18-08-20 22 01 0018 Volltextzugang Campus https://ieeexplore.ieee.org/book/6267332 22 01 0018 Nur für Angehörige der Universität Hamburg: Volltextzugang von außerhalb des Campus http://emedien.sub.uni-hamburg.de/han/ieee/ieeexplore.ieee.org/book/6267332 23 01 0830 MIT Press EBook https://ieeexplore.ieee.org/book/6267332 100 01 3100 https://ieeexplore.ieee.org/book/6267332 100 01 3100 für Uniangehörige: Zugang weltweit http://han.med.uni-magdeburg.de/han/mitvia-ieee/ieeexplore.ieee.org/book/6267332 370 01 4370 E-Book: Zugriff im HCU-Netz. Zugriff von außerhalb nur für HCU-Angehörige möglich https://ieeexplore.ieee.org/book/6267332 2015 01 DE-93 https://ieeexplore.ieee.org/book/6267332 23 01 0830 2018-01805, 2018-01806, 2018-01808 22 01 0018 olrm-h228-MITIEEE 23 01 0830 olr-MIT 100 01 3100 OLR-MIT-CEC 370 01 4370 olr-ebook mitieee 370 01 4370 2021.12.01 |
spelling |
9780262256933 ebook 978-0-262-25693-3 (DE-627)1727350464 (DE-599)KEP055118526 (OCoLC)1196123268 (MITPRESS)6267332 (EBP)055118526 DE-627 ger DE-627 rda eng 006.3/1 21 006.3/1 22 ST 300 SEPA rvk (DE-625)rvk/143650: ST 278 SEPA rvk (DE-625)rvk/143644: ST 304 SEPA rvk (DE-625)rvk/143653: 54.72 bkl 31.80 bkl Schölkopf, Bernhard verfasserin aut Learning with kernels support vector machines, regularization, optimization, and beyond Bernhard Schölkopf, Alexander J. Smola Cambridge, Massachusetts MIT Press c2002 1 PDF (xviii, 626 pages) illustrations. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adaptive computation and machine learning series Includes bibliographical references (p. [591]-616) and index. - Description based on PDF viewed 12/23/2015 In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics.Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years. Mode of access: World Wide Web. Machine learning Algorithms Kernel functions s (DE-588)4193754-5 (DE-627)105224782 (DE-576)21008944X Maschinelles Lernen gnd s (DE-588)4505517-8 (DE-627)245346708 (DE-576)213125757 Support-Vektor-Maschine gnd DE-101 s (DE-588)4193754-5 (DE-627)105224782 (DE-576)21008944X Maschinelles Lernen gnd s (DE-588)4338679-9 (DE-627)152412972 (DE-576)211390577 Kernel Informatik gnd s (DE-588)4505517-8 (DE-627)245346708 (DE-576)213125757 Support-Vektor-Maschine gnd (DE-627) Smola, Alexander J. mitwirkender ctb 9780262194754 Erscheint auch als Druck-Ausgabe 9780262194754 Erscheint auch als Druck-Ausgabe Schölkopf, Bernhard, 1968 - Learning with kernels Cambridge, Massachusetts : MIT Press, 2002 xviii, 626 Seiten (DE-627)345507118 0262194759 9780262194754 9780262536578 https://ieeexplore.ieee.org/book/6267332 X:MITPRESS Verlag lizenzpflichtig ZDB-37-IEM 2012 GBV_ILN_22 ISIL_DE-18 SYSFLAG_1 GBV_KXP GBV_ILN_22_i22818 GBV_ILN_23 ISIL_DE-830 GBV_ILN_100 ISIL_DE-Ma9 GBV_ILN_370 ISIL_DE-1373 GBV_ILN_2015 ISIL_DE-93 ST 300 Allgemeines Informatik Monografien Künstliche Intelligenz Allgemeines (DE-627)1271119005 (DE-625)rvk/143650: (DE-576)201119005 ST 278 Mensch-Maschine-Kommunikation Software-Ergonomie Informatik Monografien Software und -entwicklung Mensch-Maschine-Kommunikation Software-Ergonomie (DE-627)1270879251 (DE-625)rvk/143644: (DE-576)200879251 ST 304 Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation Informatik Monografien Künstliche Intelligenz Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation (DE-627)1271584034 (DE-625)rvk/143653: (DE-576)201584034 54.72 Künstliche Intelligenz SEPA (DE-627)10641240X 31.80 Angewandte Mathematik SEPA (DE-627)106419005 BO 045F 006.3/1 045F 006.3/1 22 01 0018 3848476509 olrm-h228-MITIEEE zi22818 03-02-21 23 01 0830 3957242002 olr-MIT i z 23-07-21 100 01 3100 4472469111 09 --%%-- eBook MIT Press --%%-- --%%-- OLR-MIT-CEC Vervielfältigungen (z.B. Kopien, Downloads) sind nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots. z 30-01-24 370 01 4370 4011223433 olr-ebook mitieee Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots. i z 01-12-21 2015 01 DE-93 3740752432 00 --%%-- --%%-- p --%%-- Campuslizenz l01 18-08-20 22 01 0018 Volltextzugang Campus https://ieeexplore.ieee.org/book/6267332 22 01 0018 Nur für Angehörige der Universität Hamburg: Volltextzugang von außerhalb des Campus http://emedien.sub.uni-hamburg.de/han/ieee/ieeexplore.ieee.org/book/6267332 23 01 0830 MIT Press EBook https://ieeexplore.ieee.org/book/6267332 100 01 3100 https://ieeexplore.ieee.org/book/6267332 100 01 3100 für Uniangehörige: Zugang weltweit http://han.med.uni-magdeburg.de/han/mitvia-ieee/ieeexplore.ieee.org/book/6267332 370 01 4370 E-Book: Zugriff im HCU-Netz. Zugriff von außerhalb nur für HCU-Angehörige möglich https://ieeexplore.ieee.org/book/6267332 2015 01 DE-93 https://ieeexplore.ieee.org/book/6267332 23 01 0830 2018-01805, 2018-01806, 2018-01808 22 01 0018 olrm-h228-MITIEEE 23 01 0830 olr-MIT 100 01 3100 OLR-MIT-CEC 370 01 4370 olr-ebook mitieee 370 01 4370 2021.12.01 |
allfields_unstemmed |
9780262256933 ebook 978-0-262-25693-3 (DE-627)1727350464 (DE-599)KEP055118526 (OCoLC)1196123268 (MITPRESS)6267332 (EBP)055118526 DE-627 ger DE-627 rda eng 006.3/1 21 006.3/1 22 ST 300 SEPA rvk (DE-625)rvk/143650: ST 278 SEPA rvk (DE-625)rvk/143644: ST 304 SEPA rvk (DE-625)rvk/143653: 54.72 bkl 31.80 bkl Schölkopf, Bernhard verfasserin aut Learning with kernels support vector machines, regularization, optimization, and beyond Bernhard Schölkopf, Alexander J. Smola Cambridge, Massachusetts MIT Press c2002 1 PDF (xviii, 626 pages) illustrations. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adaptive computation and machine learning series Includes bibliographical references (p. [591]-616) and index. - Description based on PDF viewed 12/23/2015 In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics.Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years. Mode of access: World Wide Web. Machine learning Algorithms Kernel functions s (DE-588)4193754-5 (DE-627)105224782 (DE-576)21008944X Maschinelles Lernen gnd s (DE-588)4505517-8 (DE-627)245346708 (DE-576)213125757 Support-Vektor-Maschine gnd DE-101 s (DE-588)4193754-5 (DE-627)105224782 (DE-576)21008944X Maschinelles Lernen gnd s (DE-588)4338679-9 (DE-627)152412972 (DE-576)211390577 Kernel Informatik gnd s (DE-588)4505517-8 (DE-627)245346708 (DE-576)213125757 Support-Vektor-Maschine gnd (DE-627) Smola, Alexander J. mitwirkender ctb 9780262194754 Erscheint auch als Druck-Ausgabe 9780262194754 Erscheint auch als Druck-Ausgabe Schölkopf, Bernhard, 1968 - Learning with kernels Cambridge, Massachusetts : MIT Press, 2002 xviii, 626 Seiten (DE-627)345507118 0262194759 9780262194754 9780262536578 https://ieeexplore.ieee.org/book/6267332 X:MITPRESS Verlag lizenzpflichtig ZDB-37-IEM 2012 GBV_ILN_22 ISIL_DE-18 SYSFLAG_1 GBV_KXP GBV_ILN_22_i22818 GBV_ILN_23 ISIL_DE-830 GBV_ILN_100 ISIL_DE-Ma9 GBV_ILN_370 ISIL_DE-1373 GBV_ILN_2015 ISIL_DE-93 ST 300 Allgemeines Informatik Monografien Künstliche Intelligenz Allgemeines (DE-627)1271119005 (DE-625)rvk/143650: (DE-576)201119005 ST 278 Mensch-Maschine-Kommunikation Software-Ergonomie Informatik Monografien Software und -entwicklung Mensch-Maschine-Kommunikation Software-Ergonomie (DE-627)1270879251 (DE-625)rvk/143644: (DE-576)200879251 ST 304 Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation Informatik Monografien Künstliche Intelligenz Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation (DE-627)1271584034 (DE-625)rvk/143653: (DE-576)201584034 54.72 Künstliche Intelligenz SEPA (DE-627)10641240X 31.80 Angewandte Mathematik SEPA (DE-627)106419005 BO 045F 006.3/1 045F 006.3/1 22 01 0018 3848476509 olrm-h228-MITIEEE zi22818 03-02-21 23 01 0830 3957242002 olr-MIT i z 23-07-21 100 01 3100 4472469111 09 --%%-- eBook MIT Press --%%-- --%%-- OLR-MIT-CEC Vervielfältigungen (z.B. Kopien, Downloads) sind nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots. z 30-01-24 370 01 4370 4011223433 olr-ebook mitieee Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots. i z 01-12-21 2015 01 DE-93 3740752432 00 --%%-- --%%-- p --%%-- Campuslizenz l01 18-08-20 22 01 0018 Volltextzugang Campus https://ieeexplore.ieee.org/book/6267332 22 01 0018 Nur für Angehörige der Universität Hamburg: Volltextzugang von außerhalb des Campus http://emedien.sub.uni-hamburg.de/han/ieee/ieeexplore.ieee.org/book/6267332 23 01 0830 MIT Press EBook https://ieeexplore.ieee.org/book/6267332 100 01 3100 https://ieeexplore.ieee.org/book/6267332 100 01 3100 für Uniangehörige: Zugang weltweit http://han.med.uni-magdeburg.de/han/mitvia-ieee/ieeexplore.ieee.org/book/6267332 370 01 4370 E-Book: Zugriff im HCU-Netz. Zugriff von außerhalb nur für HCU-Angehörige möglich https://ieeexplore.ieee.org/book/6267332 2015 01 DE-93 https://ieeexplore.ieee.org/book/6267332 23 01 0830 2018-01805, 2018-01806, 2018-01808 22 01 0018 olrm-h228-MITIEEE 23 01 0830 olr-MIT 100 01 3100 OLR-MIT-CEC 370 01 4370 olr-ebook mitieee 370 01 4370 2021.12.01 |
allfieldsGer |
9780262256933 ebook 978-0-262-25693-3 (DE-627)1727350464 (DE-599)KEP055118526 (OCoLC)1196123268 (MITPRESS)6267332 (EBP)055118526 DE-627 ger DE-627 rda eng 006.3/1 21 006.3/1 22 ST 300 SEPA rvk (DE-625)rvk/143650: ST 278 SEPA rvk (DE-625)rvk/143644: ST 304 SEPA rvk (DE-625)rvk/143653: 54.72 bkl 31.80 bkl Schölkopf, Bernhard verfasserin aut Learning with kernels support vector machines, regularization, optimization, and beyond Bernhard Schölkopf, Alexander J. Smola Cambridge, Massachusetts MIT Press c2002 1 PDF (xviii, 626 pages) illustrations. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adaptive computation and machine learning series Includes bibliographical references (p. [591]-616) and index. - Description based on PDF viewed 12/23/2015 In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics.Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years. Mode of access: World Wide Web. Machine learning Algorithms Kernel functions s (DE-588)4193754-5 (DE-627)105224782 (DE-576)21008944X Maschinelles Lernen gnd s (DE-588)4505517-8 (DE-627)245346708 (DE-576)213125757 Support-Vektor-Maschine gnd DE-101 s (DE-588)4193754-5 (DE-627)105224782 (DE-576)21008944X Maschinelles Lernen gnd s (DE-588)4338679-9 (DE-627)152412972 (DE-576)211390577 Kernel Informatik gnd s (DE-588)4505517-8 (DE-627)245346708 (DE-576)213125757 Support-Vektor-Maschine gnd (DE-627) Smola, Alexander J. mitwirkender ctb 9780262194754 Erscheint auch als Druck-Ausgabe 9780262194754 Erscheint auch als Druck-Ausgabe Schölkopf, Bernhard, 1968 - Learning with kernels Cambridge, Massachusetts : MIT Press, 2002 xviii, 626 Seiten (DE-627)345507118 0262194759 9780262194754 9780262536578 https://ieeexplore.ieee.org/book/6267332 X:MITPRESS Verlag lizenzpflichtig ZDB-37-IEM 2012 GBV_ILN_22 ISIL_DE-18 SYSFLAG_1 GBV_KXP GBV_ILN_22_i22818 GBV_ILN_23 ISIL_DE-830 GBV_ILN_100 ISIL_DE-Ma9 GBV_ILN_370 ISIL_DE-1373 GBV_ILN_2015 ISIL_DE-93 ST 300 Allgemeines Informatik Monografien Künstliche Intelligenz Allgemeines (DE-627)1271119005 (DE-625)rvk/143650: (DE-576)201119005 ST 278 Mensch-Maschine-Kommunikation Software-Ergonomie Informatik Monografien Software und -entwicklung Mensch-Maschine-Kommunikation Software-Ergonomie (DE-627)1270879251 (DE-625)rvk/143644: (DE-576)200879251 ST 304 Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation Informatik Monografien Künstliche Intelligenz Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation (DE-627)1271584034 (DE-625)rvk/143653: (DE-576)201584034 54.72 Künstliche Intelligenz SEPA (DE-627)10641240X 31.80 Angewandte Mathematik SEPA (DE-627)106419005 BO 045F 006.3/1 045F 006.3/1 22 01 0018 3848476509 olrm-h228-MITIEEE zi22818 03-02-21 23 01 0830 3957242002 olr-MIT i z 23-07-21 100 01 3100 4472469111 09 --%%-- eBook MIT Press --%%-- --%%-- OLR-MIT-CEC Vervielfältigungen (z.B. Kopien, Downloads) sind nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots. z 30-01-24 370 01 4370 4011223433 olr-ebook mitieee Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots. i z 01-12-21 2015 01 DE-93 3740752432 00 --%%-- --%%-- p --%%-- Campuslizenz l01 18-08-20 22 01 0018 Volltextzugang Campus https://ieeexplore.ieee.org/book/6267332 22 01 0018 Nur für Angehörige der Universität Hamburg: Volltextzugang von außerhalb des Campus http://emedien.sub.uni-hamburg.de/han/ieee/ieeexplore.ieee.org/book/6267332 23 01 0830 MIT Press EBook https://ieeexplore.ieee.org/book/6267332 100 01 3100 https://ieeexplore.ieee.org/book/6267332 100 01 3100 für Uniangehörige: Zugang weltweit http://han.med.uni-magdeburg.de/han/mitvia-ieee/ieeexplore.ieee.org/book/6267332 370 01 4370 E-Book: Zugriff im HCU-Netz. Zugriff von außerhalb nur für HCU-Angehörige möglich https://ieeexplore.ieee.org/book/6267332 2015 01 DE-93 https://ieeexplore.ieee.org/book/6267332 23 01 0830 2018-01805, 2018-01806, 2018-01808 22 01 0018 olrm-h228-MITIEEE 23 01 0830 olr-MIT 100 01 3100 OLR-MIT-CEC 370 01 4370 olr-ebook mitieee 370 01 4370 2021.12.01 |
allfieldsSound |
9780262256933 ebook 978-0-262-25693-3 (DE-627)1727350464 (DE-599)KEP055118526 (OCoLC)1196123268 (MITPRESS)6267332 (EBP)055118526 DE-627 ger DE-627 rda eng 006.3/1 21 006.3/1 22 ST 300 SEPA rvk (DE-625)rvk/143650: ST 278 SEPA rvk (DE-625)rvk/143644: ST 304 SEPA rvk (DE-625)rvk/143653: 54.72 bkl 31.80 bkl Schölkopf, Bernhard verfasserin aut Learning with kernels support vector machines, regularization, optimization, and beyond Bernhard Schölkopf, Alexander J. Smola Cambridge, Massachusetts MIT Press c2002 1 PDF (xviii, 626 pages) illustrations. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adaptive computation and machine learning series Includes bibliographical references (p. [591]-616) and index. - Description based on PDF viewed 12/23/2015 In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics.Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years. Mode of access: World Wide Web. Machine learning Algorithms Kernel functions s (DE-588)4193754-5 (DE-627)105224782 (DE-576)21008944X Maschinelles Lernen gnd s (DE-588)4505517-8 (DE-627)245346708 (DE-576)213125757 Support-Vektor-Maschine gnd DE-101 s (DE-588)4193754-5 (DE-627)105224782 (DE-576)21008944X Maschinelles Lernen gnd s (DE-588)4338679-9 (DE-627)152412972 (DE-576)211390577 Kernel Informatik gnd s (DE-588)4505517-8 (DE-627)245346708 (DE-576)213125757 Support-Vektor-Maschine gnd (DE-627) Smola, Alexander J. mitwirkender ctb 9780262194754 Erscheint auch als Druck-Ausgabe 9780262194754 Erscheint auch als Druck-Ausgabe Schölkopf, Bernhard, 1968 - Learning with kernels Cambridge, Massachusetts : MIT Press, 2002 xviii, 626 Seiten (DE-627)345507118 0262194759 9780262194754 9780262536578 https://ieeexplore.ieee.org/book/6267332 X:MITPRESS Verlag lizenzpflichtig ZDB-37-IEM 2012 GBV_ILN_22 ISIL_DE-18 SYSFLAG_1 GBV_KXP GBV_ILN_22_i22818 GBV_ILN_23 ISIL_DE-830 GBV_ILN_100 ISIL_DE-Ma9 GBV_ILN_370 ISIL_DE-1373 GBV_ILN_2015 ISIL_DE-93 ST 300 Allgemeines Informatik Monografien Künstliche Intelligenz Allgemeines (DE-627)1271119005 (DE-625)rvk/143650: (DE-576)201119005 ST 278 Mensch-Maschine-Kommunikation Software-Ergonomie Informatik Monografien Software und -entwicklung Mensch-Maschine-Kommunikation Software-Ergonomie (DE-627)1270879251 (DE-625)rvk/143644: (DE-576)200879251 ST 304 Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation Informatik Monografien Künstliche Intelligenz Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation (DE-627)1271584034 (DE-625)rvk/143653: (DE-576)201584034 54.72 Künstliche Intelligenz SEPA (DE-627)10641240X 31.80 Angewandte Mathematik SEPA (DE-627)106419005 BO 045F 006.3/1 045F 006.3/1 22 01 0018 3848476509 olrm-h228-MITIEEE zi22818 03-02-21 23 01 0830 3957242002 olr-MIT i z 23-07-21 100 01 3100 4472469111 09 --%%-- eBook MIT Press --%%-- --%%-- OLR-MIT-CEC Vervielfältigungen (z.B. Kopien, Downloads) sind nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots. z 30-01-24 370 01 4370 4011223433 olr-ebook mitieee Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots. i z 01-12-21 2015 01 DE-93 3740752432 00 --%%-- --%%-- p --%%-- Campuslizenz l01 18-08-20 22 01 0018 Volltextzugang Campus https://ieeexplore.ieee.org/book/6267332 22 01 0018 Nur für Angehörige der Universität Hamburg: Volltextzugang von außerhalb des Campus http://emedien.sub.uni-hamburg.de/han/ieee/ieeexplore.ieee.org/book/6267332 23 01 0830 MIT Press EBook https://ieeexplore.ieee.org/book/6267332 100 01 3100 https://ieeexplore.ieee.org/book/6267332 100 01 3100 für Uniangehörige: Zugang weltweit http://han.med.uni-magdeburg.de/han/mitvia-ieee/ieeexplore.ieee.org/book/6267332 370 01 4370 E-Book: Zugriff im HCU-Netz. Zugriff von außerhalb nur für HCU-Angehörige möglich https://ieeexplore.ieee.org/book/6267332 2015 01 DE-93 https://ieeexplore.ieee.org/book/6267332 23 01 0830 2018-01805, 2018-01806, 2018-01808 22 01 0018 olrm-h228-MITIEEE 23 01 0830 olr-MIT 100 01 3100 OLR-MIT-CEC 370 01 4370 olr-ebook mitieee 370 01 4370 2021.12.01 |
language |
English |
format_phy_str_mv |
Book |
building |
22:i 23 100 370 2015:0 |
bklname |
Künstliche Intelligenz Angewandte Mathematik |
institution |
findex.gbv.de |
selectbib_iln_str_mv |
22@i22818 23@ 100@ 370@ 2015@01 |
topic_facet |
Machine learning Algorithms Kernel functions Maschinelles Lernen Support-Vektor-Maschine Kernel |
dewey-raw |
006.3/1 |
isfreeaccess_bool |
false |
authorswithroles_txt_mv |
Schölkopf, Bernhard @@aut@@ Smola, Alexander J. @@ctb@@ |
publishDateDaySort_date |
2001-01-01T00:00:00Z |
dewey-sort |
16.3 11 |
id |
1727350464 |
signature_iln |
100:eBook MIT Press 3100:eBook MIT Press |
signature_iln_str_mv |
100:eBook MIT Press 3100:eBook MIT Press |
signature_iln_scis_mv |
100:eBook MIT Press 3100:eBook MIT Press |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000cam a22002652 4500</leader><controlfield tag="001">1727350464</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220729123159.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200818s2001 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262256933</subfield><subfield code="c">ebook</subfield><subfield code="9">978-0-262-25693-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1727350464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP055118526</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1196123268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MITPRESS)6267332</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EBP)055118526</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="q">SEPA</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/143650:</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 278</subfield><subfield code="q">SEPA</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/143644:</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 304</subfield><subfield code="q">SEPA</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/143653:</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schölkopf, Bernhard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning with kernels</subfield><subfield code="b">support vector machines, regularization, optimization, and beyond</subfield><subfield code="c">Bernhard Schölkopf, Alexander J. Smola</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Massachusetts</subfield><subfield code="b">MIT Press</subfield><subfield code="c">c2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 PDF (xviii, 626 pages)</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Adaptive computation and machine learning series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [591]-616) and index. - Description based on PDF viewed 12/23/2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics.Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel functions</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="D">s</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="0">(DE-627)105224782</subfield><subfield code="0">(DE-576)21008944X</subfield><subfield code="a">Maschinelles Lernen</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="D">s</subfield><subfield code="0">(DE-588)4505517-8</subfield><subfield code="0">(DE-627)245346708</subfield><subfield code="0">(DE-576)213125757</subfield><subfield code="a">Support-Vektor-Maschine</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-101</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="D">s</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="0">(DE-627)105224782</subfield><subfield code="0">(DE-576)21008944X</subfield><subfield code="a">Maschinelles Lernen</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="D">s</subfield><subfield code="0">(DE-588)4338679-9</subfield><subfield code="0">(DE-627)152412972</subfield><subfield code="0">(DE-576)211390577</subfield><subfield code="a">Kernel</subfield><subfield code="g">Informatik</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="D">s</subfield><subfield code="0">(DE-588)4505517-8</subfield><subfield code="0">(DE-627)245346708</subfield><subfield code="0">(DE-576)213125757</subfield><subfield code="a">Support-Vektor-Maschine</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">(DE-627)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smola, Alexander J.</subfield><subfield code="e">mitwirkender</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9780262194754</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780262194754</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Schölkopf, Bernhard, 1968 - </subfield><subfield code="t">Learning with kernels</subfield><subfield code="d">Cambridge, Massachusetts : MIT Press, 2002</subfield><subfield code="h">xviii, 626 Seiten</subfield><subfield code="w">(DE-627)345507118</subfield><subfield code="z">0262194759</subfield><subfield code="z">9780262194754</subfield><subfield code="z">9780262536578</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/book/6267332</subfield><subfield code="m">X:MITPRESS</subfield><subfield code="x">Verlag</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-37-IEM</subfield><subfield code="b">2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-18</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22_i22818</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-830</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-Ma9</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-1373</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-93</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ST 300</subfield><subfield code="b">Allgemeines</subfield><subfield code="k">Informatik</subfield><subfield code="k">Monografien</subfield><subfield code="k">Künstliche Intelligenz</subfield><subfield code="k">Allgemeines</subfield><subfield code="0">(DE-627)1271119005</subfield><subfield code="0">(DE-625)rvk/143650:</subfield><subfield code="0">(DE-576)201119005</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ST 278</subfield><subfield code="b">Mensch-Maschine-Kommunikation Software-Ergonomie</subfield><subfield code="k">Informatik</subfield><subfield code="k">Monografien</subfield><subfield code="k">Software und -entwicklung</subfield><subfield code="k">Mensch-Maschine-Kommunikation Software-Ergonomie</subfield><subfield code="0">(DE-627)1270879251</subfield><subfield code="0">(DE-625)rvk/143644:</subfield><subfield code="0">(DE-576)200879251</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ST 304</subfield><subfield code="b">Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation</subfield><subfield code="k">Informatik</subfield><subfield code="k">Monografien</subfield><subfield code="k">Künstliche Intelligenz</subfield><subfield code="k">Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation</subfield><subfield code="0">(DE-627)1271584034</subfield><subfield code="0">(DE-625)rvk/143653:</subfield><subfield code="0">(DE-576)201584034</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">SEPA</subfield><subfield code="0">(DE-627)10641240X</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="j">Angewandte Mathematik</subfield><subfield code="q">SEPA</subfield><subfield code="0">(DE-627)106419005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">006.3/1</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">006.3/1</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">22</subfield><subfield code="1">01</subfield><subfield code="x">0018</subfield><subfield code="b">3848476509</subfield><subfield code="h">olrm-h228-MITIEEE</subfield><subfield code="y">zi22818</subfield><subfield code="z">03-02-21</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">23</subfield><subfield code="1">01</subfield><subfield code="x">0830</subfield><subfield code="b">3957242002</subfield><subfield code="h">olr-MIT</subfield><subfield code="u">i</subfield><subfield code="y">z</subfield><subfield code="z">23-07-21</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">100</subfield><subfield code="1">01</subfield><subfield code="x">3100</subfield><subfield code="b">4472469111</subfield><subfield code="c">09</subfield><subfield code="f">--%%--</subfield><subfield code="d">eBook MIT Press</subfield><subfield code="e">--%%--</subfield><subfield code="j">--%%--</subfield><subfield code="h">OLR-MIT-CEC</subfield><subfield code="k">Vervielfältigungen (z.B. Kopien, Downloads) sind nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots.</subfield><subfield code="y">z</subfield><subfield code="z">30-01-24</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">370</subfield><subfield code="1">01</subfield><subfield code="x">4370</subfield><subfield code="b">4011223433</subfield><subfield code="h">olr-ebook mitieee</subfield><subfield code="k">Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots.</subfield><subfield code="u">i</subfield><subfield code="y">z</subfield><subfield code="z">01-12-21</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">2015</subfield><subfield code="1">01</subfield><subfield code="x">DE-93</subfield><subfield code="b">3740752432</subfield><subfield code="c">00</subfield><subfield code="f">--%%--</subfield><subfield code="d">--%%--</subfield><subfield code="e">p</subfield><subfield code="j">--%%--</subfield><subfield code="k">Campuslizenz</subfield><subfield code="y">l01</subfield><subfield code="z">18-08-20</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">22</subfield><subfield code="1">01</subfield><subfield code="x">0018</subfield><subfield code="y">Volltextzugang Campus</subfield><subfield code="r">https://ieeexplore.ieee.org/book/6267332</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">22</subfield><subfield code="1">01</subfield><subfield code="x">0018</subfield><subfield code="y">Nur für Angehörige der Universität Hamburg: Volltextzugang von außerhalb des Campus</subfield><subfield code="r">http://emedien.sub.uni-hamburg.de/han/ieee/ieeexplore.ieee.org/book/6267332</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">23</subfield><subfield code="1">01</subfield><subfield code="x">0830</subfield><subfield code="y">MIT Press EBook</subfield><subfield code="r">https://ieeexplore.ieee.org/book/6267332</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">100</subfield><subfield code="1">01</subfield><subfield code="x">3100</subfield><subfield code="r">https://ieeexplore.ieee.org/book/6267332</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">100</subfield><subfield code="1">01</subfield><subfield code="x">3100</subfield><subfield code="y">für Uniangehörige: Zugang weltweit</subfield><subfield code="r">http://han.med.uni-magdeburg.de/han/mitvia-ieee/ieeexplore.ieee.org/book/6267332</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">370</subfield><subfield code="1">01</subfield><subfield code="x">4370</subfield><subfield code="y">E-Book: Zugriff im HCU-Netz. Zugriff von außerhalb nur für HCU-Angehörige möglich</subfield><subfield code="r">https://ieeexplore.ieee.org/book/6267332</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">2015</subfield><subfield code="1">01</subfield><subfield code="x">DE-93</subfield><subfield code="r">https://ieeexplore.ieee.org/book/6267332</subfield></datafield><datafield tag="985" ind1=" " ind2=" "><subfield code="2">23</subfield><subfield code="1">01</subfield><subfield code="x">0830</subfield><subfield code="a">2018-01805, 2018-01806, 2018-01808</subfield></datafield><datafield tag="995" ind1=" " ind2=" "><subfield code="2">22</subfield><subfield code="1">01</subfield><subfield code="x">0018</subfield><subfield code="a">olrm-h228-MITIEEE</subfield></datafield><datafield tag="995" ind1=" " ind2=" "><subfield code="2">23</subfield><subfield code="1">01</subfield><subfield code="x">0830</subfield><subfield code="a">olr-MIT</subfield></datafield><datafield tag="995" ind1=" " ind2=" "><subfield code="2">100</subfield><subfield code="1">01</subfield><subfield code="x">3100</subfield><subfield code="a">OLR-MIT-CEC</subfield></datafield><datafield tag="995" ind1=" " ind2=" "><subfield code="2">370</subfield><subfield code="1">01</subfield><subfield code="x">4370</subfield><subfield code="a">olr-ebook mitieee</subfield></datafield><datafield tag="998" ind1=" " ind2=" "><subfield code="2">370</subfield><subfield code="1">01</subfield><subfield code="x">4370</subfield><subfield code="0">2021.12.01</subfield></datafield></record></collection>
|
standort_str_mv |
--%%-- |
series2 |
Adaptive computation and machine learning series |
standort_iln_str_mv |
100:--%%-- 3100:--%%-- 2015:--%%-- DE-93:--%%-- |
author |
Schölkopf, Bernhard |
spellingShingle |
Schölkopf, Bernhard ddc 006.3/1 rvk ST 300 rvk ST 278 rvk ST 304 bkl 54.72 bkl 31.80 misc Machine learning misc Algorithms misc Kernel functions gnd Maschinelles Lernen gnd Support-Vektor-Maschine gnd Kernel Learning with kernels support vector machines, regularization, optimization, and beyond |
authorStr |
Schölkopf, Bernhard |
ppnlink_with_tag_str_mv |
@@776@@(DE-627)345507118 |
format |
eBook |
dewey-ones |
006 - Special computer methods |
delete_txt_mv |
keep |
author_role |
aut |
typewithnormlink_str_mv |
SubjectHeading@(DE-588)4193754-5 SubjectHeadingSensoStricto@(DE-588)4193754-5 SubjectHeadingSensoStricto@(DE-588)4505517-8 SubjectHeading@(DE-588)4505517-8 SubjectHeading@(DE-588)4338679-9 SubjectHeadingSensoStricto@(DE-588)4338679-9 |
collection |
KXP GVK SWB |
publishPlace |
Cambridge, Massachusetts |
remote_str |
true |
abrufzeichen_iln_str_mv |
22@olrm-h228-MITIEEE 23@olr-MIT 100@OLR-MIT-CEC 370@olr-ebook mitieee |
abrufzeichen_iln_scis_mv |
22@olrm-h228-MITIEEE 23@olr-MIT 100@OLR-MIT-CEC 370@olr-ebook mitieee |
last_changed_iln_str_mv |
22@03-02-21 23@23-07-21 100@30-01-24 370@01-12-21 2015@18-08-20 |
illustrated |
Not Illustrated |
topic_title |
006.3/1 21 006.3/1 22 ST 300 SEPA rvk (DE-625)rvk/143650 ST 278 SEPA rvk (DE-625)rvk/143644 ST 304 SEPA rvk (DE-625)rvk/143653 54.72 bkl 31.80 bkl Learning with kernels support vector machines, regularization, optimization, and beyond Bernhard Schölkopf, Alexander J. Smola Machine learning Algorithms Kernel functions s (DE-588)4193754-5 (DE-627)105224782 (DE-576)21008944X Maschinelles Lernen gnd s (DE-588)4505517-8 (DE-627)245346708 (DE-576)213125757 Support-Vektor-Maschine gnd DE-101 s (DE-588)4338679-9 (DE-627)152412972 (DE-576)211390577 Kernel Informatik gnd (DE-627) |
publisher |
MIT Press |
publisherStr |
MIT Press |
topic |
ddc 006.3/1 rvk ST 300 rvk ST 278 rvk ST 304 bkl 54.72 bkl 31.80 misc Machine learning misc Algorithms misc Kernel functions gnd Maschinelles Lernen gnd Support-Vektor-Maschine gnd Kernel |
topic_unstemmed |
ddc 006.3/1 rvk ST 300 rvk ST 278 rvk ST 304 bkl 54.72 bkl 31.80 misc Machine learning misc Algorithms misc Kernel functions gnd Maschinelles Lernen gnd Support-Vektor-Maschine gnd Kernel |
topic_browse |
ddc 006.3/1 rvk ST 300 rvk ST 278 rvk ST 304 bkl 54.72 bkl 31.80 misc Machine learning misc Algorithms misc Kernel functions gnd Maschinelles Lernen gnd Support-Vektor-Maschine gnd Kernel |
format_facet |
Elektronische Bücher Bücher Elektronische Ressource |
standort_txtP_mv |
--%%-- |
format_main_str_mv |
Text Buch |
carriertype_str_mv |
cr |
author2_variant |
a j s aj ajs |
normlinkwithtype_str_mv |
(DE-588)4193754-5@SubjectHeading (DE-588)4193754-5@SubjectHeadingSensoStricto (DE-588)4505517-8@SubjectHeadingSensoStricto (DE-588)4505517-8@SubjectHeading (DE-588)4338679-9@SubjectHeading (DE-588)4338679-9@SubjectHeadingSensoStricto |
signature |
eBook MIT Press --%%-- |
signature_str_mv |
eBook MIT Press --%%-- |
dewey-tens |
000 - Computer science, knowledge & systems |
isbn |
9780262256933 0262256932 9780262194754 0262194759 |
isfreeaccess_txt |
false |
normlinkwithrole_str_mv |
(DE-588)4193754-5@@689@@ (DE-588)4505517-8@@689@@ (DE-588)4338679-9@@689@@ |
title |
Learning with kernels support vector machines, regularization, optimization, and beyond |
ctrlnum |
(DE-627)1727350464 (DE-599)KEP055118526 (OCoLC)1196123268 (MITPRESS)6267332 (EBP)055118526 |
exemplarkommentar_str_mv |
100@Vervielfältigungen (z.B. Kopien, Downloads) sind nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots. 370@Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots. 2015@Campuslizenz |
title_full |
Learning with kernels support vector machines, regularization, optimization, and beyond Bernhard Schölkopf, Alexander J. Smola |
author_sort |
Schölkopf, Bernhard |
callnumber-first-code |
e |
lang_code |
eng |
selektneu_str_mv |
370@2021.12.01 |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2001 |
contenttype_str_mv |
txt |
author_browse |
Schölkopf, Bernhard |
selectkey |
22:z 23:z 100:z 370:z 2015:l |
physical |
1 PDF (xviii, 626 pages) illustrations. |
class |
006.3/1 21 006.3/1 22 ST 300 SEPA rvk (DE-625)rvk/143650 ST 278 SEPA rvk (DE-625)rvk/143644 ST 304 SEPA rvk (DE-625)rvk/143653 54.72 bkl 31.80 bkl |
format_se |
Elektronische Bücher |
author-letter |
Schölkopf, Bernhard |
title_sub |
support vector machines, regularization, optimization, and beyond |
normlink |
RVK/143650: RVK/143644: RVK/143653: 4193754-5 105224782 21008944X 4505517-8 245346708 213125757 4338679-9 152412972 211390577 1271119005 201119005 1270879251 200879251 1271584034 201584034 10641240X 106419005 2021.12.01 |
normlink_prefix_str_mv |
(DE-625)rvk/143650: (DE-625)rvk/143644: (DE-625)rvk/143653: (DE-588)4193754-5 (DE-627)105224782 (DE-576)21008944X (DE-588)4505517-8 (DE-627)245346708 (DE-576)213125757 (DE-588)4338679-9 (DE-627)152412972 (DE-576)211390577 (DE-627)1271119005 (DE-576)201119005 (DE-627)1270879251 (DE-576)200879251 (DE-627)1271584034 (DE-576)201584034 (DE-627)10641240X (DE-627)106419005 2021.12.01 |
dewey-full |
006.3/1 |
author2-role |
mitwirkender |
title_sort |
learning with kernelssupport vector machines, regularization, optimization, and beyond |
title_auth |
Learning with kernels support vector machines, regularization, optimization, and beyond |
abstract |
In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics.Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years. Includes bibliographical references (p. [591]-616) and index. - Description based on PDF viewed 12/23/2015 |
abstractGer |
In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics.Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years. Includes bibliographical references (p. [591]-616) and index. - Description based on PDF viewed 12/23/2015 |
abstract_unstemmed |
In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics.Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years. Includes bibliographical references (p. [591]-616) and index. - Description based on PDF viewed 12/23/2015 |
collection_details |
ZDB-37-IEM GBV_ILN_22 ISIL_DE-18 SYSFLAG_1 GBV_KXP GBV_ILN_22_i22818 GBV_ILN_23 ISIL_DE-830 GBV_ILN_100 ISIL_DE-Ma9 GBV_ILN_370 ISIL_DE-1373 GBV_ILN_2015 ISIL_DE-93 |
title_short |
Learning with kernels |
url |
https://ieeexplore.ieee.org/book/6267332 |
ausleihindikator_str_mv |
22 23 100:- 370 2015:p |
rolewithnormlink_str_mv |
@@689@@(DE-588)4193754-5 @@689@@(DE-588)4505517-8 @@689@@(DE-588)4338679-9 |
remote_bool |
true |
author2 |
Smola, Alexander J. |
author2Str |
Smola, Alexander J. |
ppnlink |
345507118 |
GND_str_mv |
Machine learning Automated learning Lernen <Künstliche Intelligenz> Algorithmisches Lernen Maschinelles Lernen Support vector machine SVM Support-Vektor-Maschine Betriebssystemkern Kernel <Informatik> |
GND_txt_mv |
Machine learning Automated learning Lernen <Künstliche Intelligenz> Algorithmisches Lernen Maschinelles Lernen Support vector machine SVM Support-Vektor-Maschine Betriebssystemkern Kernel <Informatik> |
GND_txtF_mv |
Machine learning Automated learning Lernen <Künstliche Intelligenz> Algorithmisches Lernen Maschinelles Lernen Support vector machine SVM Support-Vektor-Maschine Betriebssystemkern Kernel <Informatik> |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
ctb |
callnumber-a |
eBook MIT Press |
up_date |
2024-07-04T22:59:24.311Z |
_version_ |
1803691191764516865 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000cam a22002652 4500</leader><controlfield tag="001">1727350464</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220729123159.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200818s2001 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262256933</subfield><subfield code="c">ebook</subfield><subfield code="9">978-0-262-25693-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1727350464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP055118526</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1196123268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MITPRESS)6267332</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EBP)055118526</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="q">SEPA</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/143650:</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 278</subfield><subfield code="q">SEPA</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/143644:</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 304</subfield><subfield code="q">SEPA</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/143653:</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schölkopf, Bernhard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning with kernels</subfield><subfield code="b">support vector machines, regularization, optimization, and beyond</subfield><subfield code="c">Bernhard Schölkopf, Alexander J. Smola</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Massachusetts</subfield><subfield code="b">MIT Press</subfield><subfield code="c">c2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 PDF (xviii, 626 pages)</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Adaptive computation and machine learning series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [591]-616) and index. - Description based on PDF viewed 12/23/2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics.Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel functions</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="D">s</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="0">(DE-627)105224782</subfield><subfield code="0">(DE-576)21008944X</subfield><subfield code="a">Maschinelles Lernen</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="D">s</subfield><subfield code="0">(DE-588)4505517-8</subfield><subfield code="0">(DE-627)245346708</subfield><subfield code="0">(DE-576)213125757</subfield><subfield code="a">Support-Vektor-Maschine</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-101</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="D">s</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="0">(DE-627)105224782</subfield><subfield code="0">(DE-576)21008944X</subfield><subfield code="a">Maschinelles Lernen</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="D">s</subfield><subfield code="0">(DE-588)4338679-9</subfield><subfield code="0">(DE-627)152412972</subfield><subfield code="0">(DE-576)211390577</subfield><subfield code="a">Kernel</subfield><subfield code="g">Informatik</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="D">s</subfield><subfield code="0">(DE-588)4505517-8</subfield><subfield code="0">(DE-627)245346708</subfield><subfield code="0">(DE-576)213125757</subfield><subfield code="a">Support-Vektor-Maschine</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">(DE-627)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smola, Alexander J.</subfield><subfield code="e">mitwirkender</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9780262194754</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780262194754</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Schölkopf, Bernhard, 1968 - </subfield><subfield code="t">Learning with kernels</subfield><subfield code="d">Cambridge, Massachusetts : MIT Press, 2002</subfield><subfield code="h">xviii, 626 Seiten</subfield><subfield code="w">(DE-627)345507118</subfield><subfield code="z">0262194759</subfield><subfield code="z">9780262194754</subfield><subfield code="z">9780262536578</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/book/6267332</subfield><subfield code="m">X:MITPRESS</subfield><subfield code="x">Verlag</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-37-IEM</subfield><subfield code="b">2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-18</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22_i22818</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-830</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-Ma9</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-1373</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-93</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ST 300</subfield><subfield code="b">Allgemeines</subfield><subfield code="k">Informatik</subfield><subfield code="k">Monografien</subfield><subfield code="k">Künstliche Intelligenz</subfield><subfield code="k">Allgemeines</subfield><subfield code="0">(DE-627)1271119005</subfield><subfield code="0">(DE-625)rvk/143650:</subfield><subfield code="0">(DE-576)201119005</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ST 278</subfield><subfield code="b">Mensch-Maschine-Kommunikation Software-Ergonomie</subfield><subfield code="k">Informatik</subfield><subfield code="k">Monografien</subfield><subfield code="k">Software und -entwicklung</subfield><subfield code="k">Mensch-Maschine-Kommunikation Software-Ergonomie</subfield><subfield code="0">(DE-627)1270879251</subfield><subfield code="0">(DE-625)rvk/143644:</subfield><subfield code="0">(DE-576)200879251</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ST 304</subfield><subfield code="b">Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation</subfield><subfield code="k">Informatik</subfield><subfield code="k">Monografien</subfield><subfield code="k">Künstliche Intelligenz</subfield><subfield code="k">Automatisches Programmieren, Deduction and theorem proving, Wissensrepräsentation</subfield><subfield code="0">(DE-627)1271584034</subfield><subfield code="0">(DE-625)rvk/143653:</subfield><subfield code="0">(DE-576)201584034</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">SEPA</subfield><subfield code="0">(DE-627)10641240X</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="j">Angewandte Mathematik</subfield><subfield code="q">SEPA</subfield><subfield code="0">(DE-627)106419005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">006.3/1</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">006.3/1</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">22</subfield><subfield code="1">01</subfield><subfield code="x">0018</subfield><subfield code="b">3848476509</subfield><subfield code="h">olrm-h228-MITIEEE</subfield><subfield code="y">zi22818</subfield><subfield code="z">03-02-21</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">23</subfield><subfield code="1">01</subfield><subfield code="x">0830</subfield><subfield code="b">3957242002</subfield><subfield code="h">olr-MIT</subfield><subfield code="u">i</subfield><subfield code="y">z</subfield><subfield code="z">23-07-21</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">100</subfield><subfield code="1">01</subfield><subfield code="x">3100</subfield><subfield code="b">4472469111</subfield><subfield code="c">09</subfield><subfield code="f">--%%--</subfield><subfield code="d">eBook MIT Press</subfield><subfield code="e">--%%--</subfield><subfield code="j">--%%--</subfield><subfield code="h">OLR-MIT-CEC</subfield><subfield code="k">Vervielfältigungen (z.B. Kopien, Downloads) sind nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots.</subfield><subfield code="y">z</subfield><subfield code="z">30-01-24</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">370</subfield><subfield code="1">01</subfield><subfield code="x">4370</subfield><subfield code="b">4011223433</subfield><subfield code="h">olr-ebook mitieee</subfield><subfield code="k">Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots.</subfield><subfield code="u">i</subfield><subfield code="y">z</subfield><subfield code="z">01-12-21</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">2015</subfield><subfield code="1">01</subfield><subfield code="x">DE-93</subfield><subfield code="b">3740752432</subfield><subfield code="c">00</subfield><subfield code="f">--%%--</subfield><subfield code="d">--%%--</subfield><subfield code="e">p</subfield><subfield code="j">--%%--</subfield><subfield code="k">Campuslizenz</subfield><subfield code="y">l01</subfield><subfield code="z">18-08-20</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">22</subfield><subfield code="1">01</subfield><subfield code="x">0018</subfield><subfield code="y">Volltextzugang Campus</subfield><subfield code="r">https://ieeexplore.ieee.org/book/6267332</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">22</subfield><subfield code="1">01</subfield><subfield code="x">0018</subfield><subfield code="y">Nur für Angehörige der Universität Hamburg: Volltextzugang von außerhalb des Campus</subfield><subfield code="r">http://emedien.sub.uni-hamburg.de/han/ieee/ieeexplore.ieee.org/book/6267332</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">23</subfield><subfield code="1">01</subfield><subfield code="x">0830</subfield><subfield code="y">MIT Press EBook</subfield><subfield code="r">https://ieeexplore.ieee.org/book/6267332</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">100</subfield><subfield code="1">01</subfield><subfield code="x">3100</subfield><subfield code="r">https://ieeexplore.ieee.org/book/6267332</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">100</subfield><subfield code="1">01</subfield><subfield code="x">3100</subfield><subfield code="y">für Uniangehörige: Zugang weltweit</subfield><subfield code="r">http://han.med.uni-magdeburg.de/han/mitvia-ieee/ieeexplore.ieee.org/book/6267332</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">370</subfield><subfield code="1">01</subfield><subfield code="x">4370</subfield><subfield code="y">E-Book: Zugriff im HCU-Netz. Zugriff von außerhalb nur für HCU-Angehörige möglich</subfield><subfield code="r">https://ieeexplore.ieee.org/book/6267332</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">2015</subfield><subfield code="1">01</subfield><subfield code="x">DE-93</subfield><subfield code="r">https://ieeexplore.ieee.org/book/6267332</subfield></datafield><datafield tag="985" ind1=" " ind2=" "><subfield code="2">23</subfield><subfield code="1">01</subfield><subfield code="x">0830</subfield><subfield code="a">2018-01805, 2018-01806, 2018-01808</subfield></datafield><datafield tag="995" ind1=" " ind2=" "><subfield code="2">22</subfield><subfield code="1">01</subfield><subfield code="x">0018</subfield><subfield code="a">olrm-h228-MITIEEE</subfield></datafield><datafield tag="995" ind1=" " ind2=" "><subfield code="2">23</subfield><subfield code="1">01</subfield><subfield code="x">0830</subfield><subfield code="a">olr-MIT</subfield></datafield><datafield tag="995" ind1=" " ind2=" "><subfield code="2">100</subfield><subfield code="1">01</subfield><subfield code="x">3100</subfield><subfield code="a">OLR-MIT-CEC</subfield></datafield><datafield tag="995" ind1=" " ind2=" "><subfield code="2">370</subfield><subfield code="1">01</subfield><subfield code="x">4370</subfield><subfield code="a">olr-ebook mitieee</subfield></datafield><datafield tag="998" ind1=" " ind2=" "><subfield code="2">370</subfield><subfield code="1">01</subfield><subfield code="x">4370</subfield><subfield code="0">2021.12.01</subfield></datafield></record></collection>
|
score |
7.402936 |