Hilfe beim Zugang
Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma
To investigate the correlation between computed tomography (CT) image characteristics of multiple lung ground-glass nodules (GGNs) and pathological classification, the CT image data of multiple lung GGN patients confirmed by pathology (n=132) in our hospital were collected. The imaging features of G...
Ausführliche Beschreibung
To investigate the correlation between computed tomography (CT) image characteristics of multiple lung ground-glass nodules (GGNs) and pathological classification, the CT image data of multiple lung GGN patients confirmed by pathology (n=132) in our hospital were collected. The imaging features of GGNs were analyzed by qualified physicians, including lesion size (diameter, volume, and mass), location, CT values (mean and relative CT values), lesion morphology (round and irregular), marginal structure (pagination and burr), internal structure (bronchial inflation sign), and adjacent structure (pleural depression). CT imaging analysis was performed for the subtype of infiltrating adenocarcinoma (IAC). In CT findings, GGNs were greatly different from adenomatous hyperplasia (AAH), pure GGN adenocarcinoma in situ (AIS), and microinvasive adenocarcinoma (MIA) in terms of marginal structure, lesion morphology, internal structure, adjacent structure, and size (P<0.05). The mean and relative CT values of mural adenocarcinoma, acinar adenocarcinoma, and papillary adenocarcinoma of IAC subtypes were greatly different from those of AAH/AIS/MIA (P<0.05). In summary, the CT images of GGNs can be used as the basis for the differentiation of AAH, AIS, and MIA early noninvasive types and IAC invasive types, and the CT value of the IAC subtype can be used as the basis for the classification and differentiation of IAC pathological subtypes. Ausführliche Beschreibung