Hilfe beim Zugang
β-catenin promotes MTX resistance of leukemia cells by down-regulating FPGS expression via NF-κB
Abstract Background Aberrant activation of β-catenin has been shown to play important roles in the chemoresistance of acute lymphoblastic leukemia (ALL), but the involvement and mechanism of β-catenin in methotrexate (MTX) resistance is poorly understood. In the present study, we demonstrate a criti...
Ausführliche Beschreibung
Abstract Background Aberrant activation of β-catenin has been shown to play important roles in the chemoresistance of acute lymphoblastic leukemia (ALL), but the involvement and mechanism of β-catenin in methotrexate (MTX) resistance is poorly understood. In the present study, we demonstrate a critical role of β-catenin-NF-κB-FPGS pathway in MTX resistance in the human T-lineage ALL cell lines. Methods Lentivirus sh-β-catenin was used to silence the expression of β-catenin. Flow cytometry was performed to detect apoptosis after MTX treatment. Western blot, real-time PCR, Co-immunoprecipitation (Co-IP), Chromatin immunoprecipitation (ChIP), Re-ChIP, and Luciferase assay were utilized to investigate the relationship among β-catenin, nuclear factor (NF)-κB, and folypoly-γ-glutamate synthetase (FPGS). Results Depletion of β-catenin significantly increased the cytotoxicity of MTX. At the molecular level, knockdown of β-catenin caused the increase of the protein level of FPGS and NF-κB p65. Furthermore, β-catenin complexed with NF-κB p65 and directly bound to the FPGS promoter to regulate its expression. In addition, β-catenin repression prolonged the protein turnover of FPGS. Conclusions Taken together, our results demonstrate that β-catenin may contribute to MTX resistance in leukemia cells via the β-catenin-NF-κB-FPGS pathway, posing β-catenin as a potential target for combination treatments during ALL therapy. Ausführliche Beschreibung