Hilfe beim Zugang
Introducing the Random Phase Approximation Theory
Random Phase Approximation (RPA) is the theory most commonly used to describe the excitations of many-body systems. In this article, the secular equations of the theory are obtained by using three different approaches: the equation of motion method, the Green function perturbation theory and the tim...
Ausführliche Beschreibung
Random Phase Approximation (RPA) is the theory most commonly used to describe the excitations of many-body systems. In this article, the secular equations of the theory are obtained by using three different approaches: the equation of motion method, the Green function perturbation theory and the time-dependent Hartree–Fock theory. Each approach emphasizes specific aspects of the theory overlooked by the other methods. Extensions of the RPA secular equations to treat the continuum part of the excitation spectrum and also the pairing between the particles composing the system are presented. Theoretical approaches which overcome the intrinsic approximations of RPA are outlined. Ausführliche Beschreibung