Hilfe beim Zugang
Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction?
Abstract Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retrea...
Ausführliche Beschreibung
Abstract Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume‐lithosphere interaction. Using 3‐D thermomechanical models we show that the deformation regime, which defines formation of single‐slab or multi‐slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large‐scale lithospheric extension rate. Our model results indicate that on present‐day Earth multi‐slab plume‐induced subduction is initiated only if the oceanic lithosphere is relatively young (<30–40 Myr, but <10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single‐slab subduction is facilitated by older lithosphere and pre‐imposed extensional stresses. In early Earth, plume‐lithosphere interaction could have led to formation of either episodic short‐lived circular subduction when the oceanic lithosphere was young or to multi‐slab subduction when the lithosphere was old. Ausführliche Beschreibung