Hilfe beim Zugang
Thermodynamic analysis of the para-to-ortho hydrogen conversion in cryo-compressed hydrogen vessels for automotive applications
Cryo-compressed hydrogen storage has potential applications in fuel-cell vehicles due to its large storing density and thermal endurance. The dormancy of storage can be extended when considering the endothermic conversion of para-to-ortho hydrogen. In present study, a thermodynamic model is establis...
Ausführliche Beschreibung
Cryo-compressed hydrogen storage has potential applications in fuel-cell vehicles due to its large storing density and thermal endurance. The dormancy of storage can be extended when considering the endothermic conversion of para-to-ortho hydrogen. In present study, a thermodynamic model is established to analyze the effect of the conversion in a cryogenic pressure vessel. The influence of the parameters such as the filling density, initial temperature and initial ortho hydrogen fraction is studied. It is demonstrated that different “transition pressures” for the vessels exist for different filling densities. The conversion can carry out sufficiently and the dormancy can be extended significantly when the designed release pressure of the vessel matches with the transition pressure. The heat of absorption increases with the initial o-H2 fraction, whereas the peak of conversion rate occurs earlier for the vessel with a large initial o-H2 fraction. The dormancy can be extended by 163% for the vessel with filling density of 70 kg/m3. The investigations on the effect of the para-to-ortho hydrogen conversion can provide useful guideline for the design of cryo-compressed hydrogen vessels. Ausführliche Beschreibung