Hilfe beim Zugang
Phase structure and enhanced piezoelectric properties in (1-x)(K0.48Na0.52)(Nb0.95Sb0.05)O3-x(Bi0.5Na0.42Li0.08)0.9Sr0.1ZrO3 lead-free piezoelectric ceramics
The piezoelectric properties of KNN lead-free piezoelectric ceramics could be greatly enhanced by forming multiphase coexistence. In this work, binary system (1-x)(K0.48Na0.52)(Nb0.95Sb0.05)O3-x(Bi0.5Na0.42Li0.08)0.9Sr0.1ZrO3 [(abbreviated as (1-x)KNNS-xBNLSZ] ceramics with rhombohedral-tetragonal (...
Ausführliche Beschreibung
The piezoelectric properties of KNN lead-free piezoelectric ceramics could be greatly enhanced by forming multiphase coexistence. In this work, binary system (1-x)(K0.48Na0.52)(Nb0.95Sb0.05)O3-x(Bi0.5Na0.42Li0.08)0.9Sr0.1ZrO3 [(abbreviated as (1-x)KNNS-xBNLSZ] ceramics with rhombohedral-tetragonal (r-T) phase boundary was designed and synthesized using the conventional solid-state sintering method, and effects of BNLSZ contents on their micrograph, phase structure and electrical properties were also investigated. According to phase diagram from the results of temperature-dependent capacitance and dielectric constant, the ceramics exhibit the R-T phase coexistence in the composition range of 3.5%≤x<4.5%, and an enhanced dielectric, ferroelectric, and piezoelectric behavior was obtained at such a phase boundary zone. As a result, the ceramics with x=0.04 exhibit optimum electrical properties of d 33~461pC/N, k p~46%, tan δ~0.03, P r~16.9 μC/cm2, and E c ~9kV/cm, together with a Curie temperature (T C) of ~228°C. Such a good comprehensive performance obtained in this present work is due to the R-T phase transition and enhanced ɛ r P r. It was believed that this ceramic system would promote the development of KNN-based lead-free ceramics. Ausführliche Beschreibung