Hilfe beim Zugang
Studies of non-trivial band topology and electron-hole compensation in YSb
In this article, we study non-trivial topological phase and electron-hole compensation in extremely large magnetoresistance (XMR) material YSb under hydrostatic pressure using first-principles calculations. YSb is topologically trivial at ambient pressure, but undergoes a reentrant topological phase...
Ausführliche Beschreibung
In this article, we study non-trivial topological phase and electron-hole compensation in extremely large magnetoresistance (XMR) material YSb under hydrostatic pressure using first-principles calculations. YSb is topologically trivial at ambient pressure, but undergoes a reentrant topological phase transition under hydrostatic pressure. The reentrant behavior of topological quantum phase is then studied as a function of charge density ratio under pressure. From the detailed investigation of Fermi surfaces, it is found that electron to hole densities ratio increases with pressure, however a non-trivial topological phase appears without perfect electron-hole compensation. The results indicate that the non-trivial topological phase under hydrostatic pressure may not have maximal influence on the magnetoresistance, and need further investigations through experiments to determine the exact relationship between topology and XMR effect. Ausführliche Beschreibung