Hilfe beim Zugang
High-Affinity Agonist Binding Correlates with Efficacy (Intrinsic Activity) at the Human Serotonin 5-HT2A and 5-HT2C Receptors: Evidence Favoring the Ternary Complex and Two-State Models of Agonist Action
Abstract: Many modern models of receptor-G protein function assume that there is a direct relationship between high-affinity agonist binding and efficacy. The validity of this assumption has been recently questioned for the serotonin 5-HT2A receptor. We examined the intrinsic activities of various l...
Ausführliche Beschreibung
Abstract: Many modern models of receptor-G protein function assume that there is a direct relationship between high-affinity agonist binding and efficacy. The validity of this assumption has been recently questioned for the serotonin 5-HT2A receptor. We examined the intrinsic activities of various ligands in activating phosphoinositide hydrolysis and measured their respective binding affinities to the high- and low-affinity states of the 5-HT2C (VNV isoform) and 5-HT2A receptors. Ligand binding affinities for the high-affinity state of the receptors were determined using 1-(4-[125I]iodo-2,5-dimethoxyphenyl)-2-aminopropane, whereas [3H]mesulergine and N-[3H]methylspiperone were used, in the presence of excess guanine nucleotide [guanosine 5′-O-(3-thiotriphosphate)], to define binding to the low-affinity state of the 5-HT2C and 5-HT2A receptors, respectively. Antagonists labeled the high- and low-affinity states of each receptor with comparable affinities. Previously identified inverse agonists of the 5-HT2C receptor behaved as silent antagonists in our systems even when the receptor was over-expressed at a relatively high density. In contrast, the ability of agonists to bind differentially to the high- and low-affinity states of the 5-HT2A and 5-HT2C receptors was highly correlated (r2= 0.86 and 0.96, respectively) with their intrinsic activities. These data suggest that high-affinity agonist states can account for agonist efficacy at human 5-HT2A or 5-HT2C receptors without the need for considering additional transition or active states of the receptor-ligand complex. The procedure described herein may expedite drug discovery efforts by predicting intrinsic activities of ligands solely from ligand binding assays. Ausführliche Beschreibung