Hilfe beim Zugang
Fault diagnosis of multistage manufacturing systems based on rough set approach
Abstract Multistage manufacturing systems (MMS) have been investigated extensively. However, quality and dimensional problems are still one of the most important research topics, especially rapid diagnosis of dimensional failures is of critical concern. Due to the knowledge and experience intension...
Ausführliche Beschreibung
Abstract Multistage manufacturing systems (MMS) have been investigated extensively. However, quality and dimensional problems are still one of the most important research topics, especially rapid diagnosis of dimensional failures is of critical concern. Due to the knowledge and experience intension nature of fault diagnosis, the diagnostic results depend on the preference of the decision makers on the hidden relations between possible faults and presented symptoms. In this paper, a rough set-based fault diagnosis method is proposed, and a rapid fault diagnosis system with rough set is developed. The novel approach uses rough sets theory as a knowledge extraction tool to deal with the data that are obtained from both sensors and statistical process control charts and then extracts a set of minimal diagnostic rules encoding the preference pattern of decision making by experts in the field. By means of knowledge acquisition, the machining process failures in MMS can then be identified. A practical system is presented to illustrate the efficiency and effectivity of our method. Ausführliche Beschreibung