Hilfe beim Zugang
Secretome of the preimplantation human embryo by bottom-up label-free proteomics
Abstract A bottom-up label-free mass spectrometric proteomic strategy was used to analyse the protein profiles of the human embryonic secretome. Culture media samples used for embryonic culture of patients undergoing intracytoplasmic sperm injection cycles were selected as a test case for this explo...
Ausführliche Beschreibung
Abstract A bottom-up label-free mass spectrometric proteomic strategy was used to analyse the protein profiles of the human embryonic secretome. Culture media samples used for embryonic culture of patients undergoing intracytoplasmic sperm injection cycles were selected as a test case for this exploratory proof-of-principle study. The media were stored after embryo transfer and then pooled into positive (n = 8) and negative (n = 8) implantation groups. The absolute quantitative bottom-up technique employed a multidimensional protein identification technology based on separation by nano-ultra-high pressure chromatography and identification via tandem nano-electrospray ionization mass spectrometry with data-independent scanning in a hydrid QqTOF mass spectrometer. By applying quantitative bottom-up proteomics, unique proteins were found exclusively in both the positive- and negative-implantation groups, which suggest that competent embryos express and secrete unique biomarker proteins into the surrounding culture medium. The selective monitoring of these possible secretome biomarkers could make viable procedures using single-embryo transfer. FigureA bottom-up label-free proteomic mass spectrometric analysis of the human embryo secretome is described. This approach seems to allow quantification and identification of unique proteins related to positive- and negative-implantation groups, which can be further validated as biomarkers for selection and transfer of a single embryo. Ausführliche Beschreibung