Hilfe beim Zugang
No frequency shift in the “D” notes of Carolina chickadee calls in response to traffic noise
Abstract Loud, low-frequency traffic noise can mask songbird vocalizations, and populations of some urban songbird species have shifted the frequency of their vocalizations upward in response. However, the spectral structure of certain vocalization elements may make them resistant to masking, sugges...
Ausführliche Beschreibung
Abstract Loud, low-frequency traffic noise can mask songbird vocalizations, and populations of some urban songbird species have shifted the frequency of their vocalizations upward in response. However, the spectral structure of certain vocalization elements may make them resistant to masking, suggesting that species that use these notes could be more successful in areas with high levels of traffic noise. To test this idea, we recorded Carolina chickadees (Poecile carolinensis), whose calls feature “D” notes with an overtone spectral structure, along a traffic noise gradient in Durham and Orange Counties, North Carolina, USA. Frequency parameters of “D” notes did not change with noise level suggesting the possibility that these notes can be communicated effectively in noise, but further investigation is needed to test this hypothesis directly. In addition, we performed a playback experiment demonstrating how the use of spectrograms to measure note frequencies is unreliable, especially when recordings are made in noisy areas. We used an alternative method based on the predictable frequency structure of “D” notes. Our experiment is one of few that address the effects of urban noise on calls produced by both sexes as opposed to song produced only by males during the breeding season. Understanding how vocalizations with different spectral structures may be affected differentially by traffic noise will increase our ability to predict how the expansion of noisy areas may impact songbird community composition in the future. Ausführliche Beschreibung