Hilfe beim Zugang
The surgeon’s role on chemical investigations of the composition of urinary stones
Abstract The chemical analysis of an urolith is often interpreted as “stone’s composition”. However, it must be taken into consideration, that in most cases, only a fragment of the stone has been sent to the laboratory. In some recurrent patients, stone compositions either vary considerably between...
Ausführliche Beschreibung
Abstract The chemical analysis of an urolith is often interpreted as “stone’s composition”. However, it must be taken into consideration, that in most cases, only a fragment of the stone has been sent to the laboratory. In some recurrent patients, stone compositions either vary considerably between episodes or the analytical result obtained from the stone fragment does not fit with the data of e.g. current 24 h-urinalysis or urinary pH-records. The question arises, whether this outcome may be the result of an improper stone sampling scheme. On a simple layered 2D-stone model composed of two mineral phases it is shown, how the choice of a stone fragment process may influence the result of “stone composition”. Depending on the initial position of fragment within the whole stone, the respective calculated analyses can relevantly differ from the whole stone composition as well as strongly between two fragments. Even under the simplified conditions of a 2D-2-component-model “grown” under defined conditions, the differences between the analyses of the different specimens taken from a stone are in part remarkable. The more it can be argued that these differences increase if a real 3D-urolith is investigated. Further sampling biases may evolve and increase the problem of proper sampling:, e.g., if an urolith’s more resistant parts remain intact while ESWL or laser-based stone fragmentation (“dusting”), the weak parts became fully disintegrated and removed from the body as fine-grained sludge—the stone’s fine fraction is lost although its composition may carry important information on the stone’s pathogenesis. Consequently, a “stone analysis” only obtained from the harder remains reveals an incomplete result, a fact that in principle limits its clinical interpretation. Choice of stone fragment is crucial. The extent of the uncertainty of an analysis resulting from potential selection biases should not be underestimated. Thus, sampling should be considered as an important part of the processes of quality assurance and management. Errors made at this early stage of diagnosis finding will affect the analytical result and thus influence the clarification of the underlying pathomechanism. This can lead to an improper metaphylactic strategy potentially causing recurrent stone formation which otherwise would have been prevented. A decision scheme for analysis of urinary stones removed using endoscopic methods is suggested. Ausführliche Beschreibung