Hilfe beim Zugang
Complete organellar genomes and molecular phylogeny of Hypnea cervicornis (Gigartinales, Florideophyceae) from China
Abstract Hypnea cervicornis J. Agardh (Gigartinales, Florideophyceae) is a commercially important carrageenan producing seaweed. Currently, there are no organellar genomes of Hypnea species available in public databases. Here, we report the complete organellar genomes of H. cervicornis using next-ge...
Ausführliche Beschreibung
Abstract Hypnea cervicornis J. Agardh (Gigartinales, Florideophyceae) is a commercially important carrageenan producing seaweed. Currently, there are no organellar genomes of Hypnea species available in public databases. Here, we report the complete organellar genomes of H. cervicornis using next-generation sequencing technology. The mitochondrial genome has a circular mapping organization with a total length of 25,060 bp and consists of 50 genes (24 protein-coding, 2 rRNA, and 24 tRNA). The plastid genome is also a circular molecule and is 176,446 bp in length and includes 230 genes (194 protein-coding, 3 rRNA, 30 tRNA, 1 tmRNA and 2 misc_RNA). Colinear analysis show that the organellar genomes in the Gigartinales are conserved, except for the inversion of two genes (trnY and trnR) in the mitochondrial genome and a 12.5-kb rearrangement in the plastid genome. One stem-loop structure at the intergenic regions between trnS2 and trnA, plus one short hairpin structure between cob and trnL2 are detected in the mitochondrial genome of H. cervicornis. The Ka/Ks analysis reveal that values for most of the protein-coding genes in organellar genomes of H. cervicornis are below one, reflecting the importance of those genes. Phylogenetic relationships based on shared protein-coding genes from the organellar genomes of Rhodophyta are also examined. Ausführliche Beschreibung