Quantum mean-field games with the observations of counting type
Quantum games and mean-field games (MFG) represent two important new branches of game theory. In a recent paper the author developed quantum MFGs merging these two branches. These quantum MFGs were based on the theory of continuous quantum observations and filtering of diffusive type. In the present...
Ausführliche Beschreibung
Autor*in: |
Kolokolʹcov, Vassilij N. - 1959- [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Rechteinformationen: |
Open Access Namensnennung 4.0 International ; CC BY 4.0 |
---|
Schlagwörter: |
mean field games of jump type on manifolds nonlinear stochastic Schrödinger equation |
---|
Übergeordnetes Werk: |
Enthalten in: Games - Basel : MDPI, 2010, 12(2021), 1/7 vom: März, Seite 1-14 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2021 ; number:1/7 ; month:03 ; pages:1-14 |
Links: |
---|
DOI / URN: |
10.3390/g12010007 |
---|
Katalog-ID: |
1749096641 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | 1749096641 | ||
003 | DE-627 | ||
005 | 20220530071931.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210222s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/g12010007 |2 doi | |
024 | 7 | |a 10419/257490 |2 hdl | |
035 | |a (DE-627)1749096641 | ||
035 | |a (DE-599)KXP1749096641 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Kolokolʹcov, Vassilij N. |d 1959- |e verfasserin |0 (DE-588)121728633 |0 (DE-627)250016362 |0 (DE-576)178687626 |4 aut | |
245 | 1 | 0 | |a Quantum mean-field games with the observations of counting type |c Vassili N. Kolokoltsov |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
506 | 0 | |q DE-206 |a Open Access |e Controlled Vocabulary for Access Rights |u http://purl.org/coar/access_right/c_abf2 | |
520 | |a Quantum games and mean-field games (MFG) represent two important new branches of game theory. In a recent paper the author developed quantum MFGs merging these two branches. These quantum MFGs were based on the theory of continuous quantum observations and filtering of diffusive type. In the present paper we develop the analogous quantum MFG theory based on continuous quantum observations and filtering of counting type. However, proving existence and uniqueness of the solutions for resulting limiting forward-backward system based on jump-type processes on manifolds seems to be more complicated than for diffusions. In this paper we only prove that if a solution exists, then it gives an ϵ-Nash equilibrium for the corresponding N-player quantum game. The existence of solutions is suggested as an interesting open problem. | ||
540 | |q DE-206 |a Namensnennung 4.0 International |f CC BY 4.0 |2 cc |u https://creativecommons.org/licenses/by/4.0/ | ||
650 | 4 | |a Belavkin equation |7 (dpeaa)DE-206 | |
650 | 4 | |a mean field games of jump type on manifolds |7 (dpeaa)DE-206 | |
650 | 4 | |a nonlinear stochastic Schrödinger equation |7 (dpeaa)DE-206 | |
650 | 4 | |a observation of counting type |7 (dpeaa)DE-206 | |
650 | 4 | |a quantum control |7 (dpeaa)DE-206 | |
650 | 4 | |a quantum dynamic law of large numbers |7 (dpeaa)DE-206 | |
650 | 4 | |a quantum filtering |7 (dpeaa)DE-206 | |
650 | 4 | |a quantum interacting particles |7 (dpeaa)DE-206 | |
650 | 4 | |a quantum mean field games |7 (dpeaa)DE-206 | |
773 | 0 | 8 | |i Enthalten in |t Games |d Basel : MDPI, 2010 |g 12(2021), 1/7 vom: März, Seite 1-14 |h Online-Ressource |w (DE-627)614096553 |w (DE-600)2527220-2 |w (DE-576)31395867X |x 2073-4336 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2021 |g number:1/7 |g month:03 |g pages:1-14 |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4336/12/1/7/pdf |x Verlag |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3390/g12010007 |x Resolving-System |z kostenfrei |
856 | 4 | 0 | |u http://hdl.handle.net/10419/257490 |x Resolving-System |z kostenfrei |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ILN_26 | ||
912 | |a ISIL_DE-206 | ||
912 | |a SYSFLAG_1 | ||
912 | |a GBV_KXP | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
912 | |a GBV_ILN_2403 | ||
912 | |a GBV_ILN_2403 | ||
912 | |a ISIL_DE-LFER | ||
951 | |a AR | ||
952 | |d 12 |j 2021 |e 1/7 |c 3 |h 1-14 | ||
980 | |2 26 |1 01 |x 0206 |b 3869306327 |y x1z |z 22-02-21 | ||
980 | |2 2403 |1 01 |x DE-LFER |b 3883160814 |c 00 |f --%%-- |d --%%-- |e n |j --%%-- |y l01 |z 09-03-21 | ||
981 | |2 2403 |1 01 |x DE-LFER |r https://doi.org/10.3390/g12010007 | ||
981 | |2 2403 |1 01 |x DE-LFER |r https://www.mdpi.com/2073-4336/12/1/7/pdf |
author_variant |
v n k vn vnk |
---|---|
matchkey_str |
article:20734336:2021----::unumafedaewttebevto |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/g12010007 doi 10419/257490 hdl (DE-627)1749096641 (DE-599)KXP1749096641 DE-627 ger DE-627 rda eng Kolokolʹcov, Vassilij N. 1959- verfasserin (DE-588)121728633 (DE-627)250016362 (DE-576)178687626 aut Quantum mean-field games with the observations of counting type Vassili N. Kolokoltsov 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier DE-206 Open Access Controlled Vocabulary for Access Rights http://purl.org/coar/access_right/c_abf2 Quantum games and mean-field games (MFG) represent two important new branches of game theory. In a recent paper the author developed quantum MFGs merging these two branches. These quantum MFGs were based on the theory of continuous quantum observations and filtering of diffusive type. In the present paper we develop the analogous quantum MFG theory based on continuous quantum observations and filtering of counting type. However, proving existence and uniqueness of the solutions for resulting limiting forward-backward system based on jump-type processes on manifolds seems to be more complicated than for diffusions. In this paper we only prove that if a solution exists, then it gives an ϵ-Nash equilibrium for the corresponding N-player quantum game. The existence of solutions is suggested as an interesting open problem. DE-206 Namensnennung 4.0 International CC BY 4.0 cc https://creativecommons.org/licenses/by/4.0/ Belavkin equation (dpeaa)DE-206 mean field games of jump type on manifolds (dpeaa)DE-206 nonlinear stochastic Schrödinger equation (dpeaa)DE-206 observation of counting type (dpeaa)DE-206 quantum control (dpeaa)DE-206 quantum dynamic law of large numbers (dpeaa)DE-206 quantum filtering (dpeaa)DE-206 quantum interacting particles (dpeaa)DE-206 quantum mean field games (dpeaa)DE-206 Enthalten in Games Basel : MDPI, 2010 12(2021), 1/7 vom: März, Seite 1-14 Online-Ressource (DE-627)614096553 (DE-600)2527220-2 (DE-576)31395867X 2073-4336 nnns volume:12 year:2021 number:1/7 month:03 pages:1-14 https://www.mdpi.com/2073-4336/12/1/7/pdf Verlag kostenfrei https://doi.org/10.3390/g12010007 Resolving-System kostenfrei http://hdl.handle.net/10419/257490 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 12 2021 1/7 3 1-14 26 01 0206 3869306327 x1z 22-02-21 2403 01 DE-LFER 3883160814 00 --%%-- --%%-- n --%%-- l01 09-03-21 2403 01 DE-LFER https://doi.org/10.3390/g12010007 2403 01 DE-LFER https://www.mdpi.com/2073-4336/12/1/7/pdf |
spelling |
10.3390/g12010007 doi 10419/257490 hdl (DE-627)1749096641 (DE-599)KXP1749096641 DE-627 ger DE-627 rda eng Kolokolʹcov, Vassilij N. 1959- verfasserin (DE-588)121728633 (DE-627)250016362 (DE-576)178687626 aut Quantum mean-field games with the observations of counting type Vassili N. Kolokoltsov 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier DE-206 Open Access Controlled Vocabulary for Access Rights http://purl.org/coar/access_right/c_abf2 Quantum games and mean-field games (MFG) represent two important new branches of game theory. In a recent paper the author developed quantum MFGs merging these two branches. These quantum MFGs were based on the theory of continuous quantum observations and filtering of diffusive type. In the present paper we develop the analogous quantum MFG theory based on continuous quantum observations and filtering of counting type. However, proving existence and uniqueness of the solutions for resulting limiting forward-backward system based on jump-type processes on manifolds seems to be more complicated than for diffusions. In this paper we only prove that if a solution exists, then it gives an ϵ-Nash equilibrium for the corresponding N-player quantum game. The existence of solutions is suggested as an interesting open problem. DE-206 Namensnennung 4.0 International CC BY 4.0 cc https://creativecommons.org/licenses/by/4.0/ Belavkin equation (dpeaa)DE-206 mean field games of jump type on manifolds (dpeaa)DE-206 nonlinear stochastic Schrödinger equation (dpeaa)DE-206 observation of counting type (dpeaa)DE-206 quantum control (dpeaa)DE-206 quantum dynamic law of large numbers (dpeaa)DE-206 quantum filtering (dpeaa)DE-206 quantum interacting particles (dpeaa)DE-206 quantum mean field games (dpeaa)DE-206 Enthalten in Games Basel : MDPI, 2010 12(2021), 1/7 vom: März, Seite 1-14 Online-Ressource (DE-627)614096553 (DE-600)2527220-2 (DE-576)31395867X 2073-4336 nnns volume:12 year:2021 number:1/7 month:03 pages:1-14 https://www.mdpi.com/2073-4336/12/1/7/pdf Verlag kostenfrei https://doi.org/10.3390/g12010007 Resolving-System kostenfrei http://hdl.handle.net/10419/257490 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 12 2021 1/7 3 1-14 26 01 0206 3869306327 x1z 22-02-21 2403 01 DE-LFER 3883160814 00 --%%-- --%%-- n --%%-- l01 09-03-21 2403 01 DE-LFER https://doi.org/10.3390/g12010007 2403 01 DE-LFER https://www.mdpi.com/2073-4336/12/1/7/pdf |
allfields_unstemmed |
10.3390/g12010007 doi 10419/257490 hdl (DE-627)1749096641 (DE-599)KXP1749096641 DE-627 ger DE-627 rda eng Kolokolʹcov, Vassilij N. 1959- verfasserin (DE-588)121728633 (DE-627)250016362 (DE-576)178687626 aut Quantum mean-field games with the observations of counting type Vassili N. Kolokoltsov 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier DE-206 Open Access Controlled Vocabulary for Access Rights http://purl.org/coar/access_right/c_abf2 Quantum games and mean-field games (MFG) represent two important new branches of game theory. In a recent paper the author developed quantum MFGs merging these two branches. These quantum MFGs were based on the theory of continuous quantum observations and filtering of diffusive type. In the present paper we develop the analogous quantum MFG theory based on continuous quantum observations and filtering of counting type. However, proving existence and uniqueness of the solutions for resulting limiting forward-backward system based on jump-type processes on manifolds seems to be more complicated than for diffusions. In this paper we only prove that if a solution exists, then it gives an ϵ-Nash equilibrium for the corresponding N-player quantum game. The existence of solutions is suggested as an interesting open problem. DE-206 Namensnennung 4.0 International CC BY 4.0 cc https://creativecommons.org/licenses/by/4.0/ Belavkin equation (dpeaa)DE-206 mean field games of jump type on manifolds (dpeaa)DE-206 nonlinear stochastic Schrödinger equation (dpeaa)DE-206 observation of counting type (dpeaa)DE-206 quantum control (dpeaa)DE-206 quantum dynamic law of large numbers (dpeaa)DE-206 quantum filtering (dpeaa)DE-206 quantum interacting particles (dpeaa)DE-206 quantum mean field games (dpeaa)DE-206 Enthalten in Games Basel : MDPI, 2010 12(2021), 1/7 vom: März, Seite 1-14 Online-Ressource (DE-627)614096553 (DE-600)2527220-2 (DE-576)31395867X 2073-4336 nnns volume:12 year:2021 number:1/7 month:03 pages:1-14 https://www.mdpi.com/2073-4336/12/1/7/pdf Verlag kostenfrei https://doi.org/10.3390/g12010007 Resolving-System kostenfrei http://hdl.handle.net/10419/257490 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 12 2021 1/7 3 1-14 26 01 0206 3869306327 x1z 22-02-21 2403 01 DE-LFER 3883160814 00 --%%-- --%%-- n --%%-- l01 09-03-21 2403 01 DE-LFER https://doi.org/10.3390/g12010007 2403 01 DE-LFER https://www.mdpi.com/2073-4336/12/1/7/pdf |
allfieldsGer |
10.3390/g12010007 doi 10419/257490 hdl (DE-627)1749096641 (DE-599)KXP1749096641 DE-627 ger DE-627 rda eng Kolokolʹcov, Vassilij N. 1959- verfasserin (DE-588)121728633 (DE-627)250016362 (DE-576)178687626 aut Quantum mean-field games with the observations of counting type Vassili N. Kolokoltsov 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier DE-206 Open Access Controlled Vocabulary for Access Rights http://purl.org/coar/access_right/c_abf2 Quantum games and mean-field games (MFG) represent two important new branches of game theory. In a recent paper the author developed quantum MFGs merging these two branches. These quantum MFGs were based on the theory of continuous quantum observations and filtering of diffusive type. In the present paper we develop the analogous quantum MFG theory based on continuous quantum observations and filtering of counting type. However, proving existence and uniqueness of the solutions for resulting limiting forward-backward system based on jump-type processes on manifolds seems to be more complicated than for diffusions. In this paper we only prove that if a solution exists, then it gives an ϵ-Nash equilibrium for the corresponding N-player quantum game. The existence of solutions is suggested as an interesting open problem. DE-206 Namensnennung 4.0 International CC BY 4.0 cc https://creativecommons.org/licenses/by/4.0/ Belavkin equation (dpeaa)DE-206 mean field games of jump type on manifolds (dpeaa)DE-206 nonlinear stochastic Schrödinger equation (dpeaa)DE-206 observation of counting type (dpeaa)DE-206 quantum control (dpeaa)DE-206 quantum dynamic law of large numbers (dpeaa)DE-206 quantum filtering (dpeaa)DE-206 quantum interacting particles (dpeaa)DE-206 quantum mean field games (dpeaa)DE-206 Enthalten in Games Basel : MDPI, 2010 12(2021), 1/7 vom: März, Seite 1-14 Online-Ressource (DE-627)614096553 (DE-600)2527220-2 (DE-576)31395867X 2073-4336 nnns volume:12 year:2021 number:1/7 month:03 pages:1-14 https://www.mdpi.com/2073-4336/12/1/7/pdf Verlag kostenfrei https://doi.org/10.3390/g12010007 Resolving-System kostenfrei http://hdl.handle.net/10419/257490 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 12 2021 1/7 3 1-14 26 01 0206 3869306327 x1z 22-02-21 2403 01 DE-LFER 3883160814 00 --%%-- --%%-- n --%%-- l01 09-03-21 2403 01 DE-LFER https://doi.org/10.3390/g12010007 2403 01 DE-LFER https://www.mdpi.com/2073-4336/12/1/7/pdf |
allfieldsSound |
10.3390/g12010007 doi 10419/257490 hdl (DE-627)1749096641 (DE-599)KXP1749096641 DE-627 ger DE-627 rda eng Kolokolʹcov, Vassilij N. 1959- verfasserin (DE-588)121728633 (DE-627)250016362 (DE-576)178687626 aut Quantum mean-field games with the observations of counting type Vassili N. Kolokoltsov 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier DE-206 Open Access Controlled Vocabulary for Access Rights http://purl.org/coar/access_right/c_abf2 Quantum games and mean-field games (MFG) represent two important new branches of game theory. In a recent paper the author developed quantum MFGs merging these two branches. These quantum MFGs were based on the theory of continuous quantum observations and filtering of diffusive type. In the present paper we develop the analogous quantum MFG theory based on continuous quantum observations and filtering of counting type. However, proving existence and uniqueness of the solutions for resulting limiting forward-backward system based on jump-type processes on manifolds seems to be more complicated than for diffusions. In this paper we only prove that if a solution exists, then it gives an ϵ-Nash equilibrium for the corresponding N-player quantum game. The existence of solutions is suggested as an interesting open problem. DE-206 Namensnennung 4.0 International CC BY 4.0 cc https://creativecommons.org/licenses/by/4.0/ Belavkin equation (dpeaa)DE-206 mean field games of jump type on manifolds (dpeaa)DE-206 nonlinear stochastic Schrödinger equation (dpeaa)DE-206 observation of counting type (dpeaa)DE-206 quantum control (dpeaa)DE-206 quantum dynamic law of large numbers (dpeaa)DE-206 quantum filtering (dpeaa)DE-206 quantum interacting particles (dpeaa)DE-206 quantum mean field games (dpeaa)DE-206 Enthalten in Games Basel : MDPI, 2010 12(2021), 1/7 vom: März, Seite 1-14 Online-Ressource (DE-627)614096553 (DE-600)2527220-2 (DE-576)31395867X 2073-4336 nnns volume:12 year:2021 number:1/7 month:03 pages:1-14 https://www.mdpi.com/2073-4336/12/1/7/pdf Verlag kostenfrei https://doi.org/10.3390/g12010007 Resolving-System kostenfrei http://hdl.handle.net/10419/257490 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 12 2021 1/7 3 1-14 26 01 0206 3869306327 x1z 22-02-21 2403 01 DE-LFER 3883160814 00 --%%-- --%%-- n --%%-- l01 09-03-21 2403 01 DE-LFER https://doi.org/10.3390/g12010007 2403 01 DE-LFER https://www.mdpi.com/2073-4336/12/1/7/pdf |
language |
English |
source |
Enthalten in Games 12(2021), 1/7 vom: März, Seite 1-14 volume:12 year:2021 number:1/7 month:03 pages:1-14 |
sourceStr |
Enthalten in Games 12(2021), 1/7 vom: März, Seite 1-14 volume:12 year:2021 number:1/7 month:03 pages:1-14 |
format_phy_str_mv |
Article |
building |
26:1 2403:0 |
institution |
findex.gbv.de |
selectbib_iln_str_mv |
26@1z 2403@01 |
topic_facet |
Belavkin equation mean field games of jump type on manifolds nonlinear stochastic Schrödinger equation observation of counting type quantum control quantum dynamic law of large numbers quantum filtering quantum interacting particles quantum mean field games |
isfreeaccess_bool |
true |
container_title |
Games |
authorswithroles_txt_mv |
Kolokolʹcov, Vassilij N. @@aut@@ |
publishDateDaySort_date |
2021-03-01T00:00:00Z |
hierarchy_top_id |
614096553 |
id |
1749096641 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">1749096641</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220530071931.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210222s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/g12010007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10419/257490</subfield><subfield code="2">hdl</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1749096641</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1749096641</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolokolʹcov, Vassilij N.</subfield><subfield code="d">1959-</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)121728633</subfield><subfield code="0">(DE-627)250016362</subfield><subfield code="0">(DE-576)178687626</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum mean-field games with the observations of counting type</subfield><subfield code="c">Vassili N. Kolokoltsov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="506" ind1="0" ind2=" "><subfield code="q">DE-206</subfield><subfield code="a">Open Access</subfield><subfield code="e">Controlled Vocabulary for Access Rights</subfield><subfield code="u">http://purl.org/coar/access_right/c_abf2</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quantum games and mean-field games (MFG) represent two important new branches of game theory. In a recent paper the author developed quantum MFGs merging these two branches. These quantum MFGs were based on the theory of continuous quantum observations and filtering of diffusive type. In the present paper we develop the analogous quantum MFG theory based on continuous quantum observations and filtering of counting type. However, proving existence and uniqueness of the solutions for resulting limiting forward-backward system based on jump-type processes on manifolds seems to be more complicated than for diffusions. In this paper we only prove that if a solution exists, then it gives an ϵ-Nash equilibrium for the corresponding N-player quantum game. The existence of solutions is suggested as an interesting open problem.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="q">DE-206</subfield><subfield code="a">Namensnennung 4.0 International</subfield><subfield code="f">CC BY 4.0</subfield><subfield code="2">cc</subfield><subfield code="u">https://creativecommons.org/licenses/by/4.0/</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Belavkin equation</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mean field games of jump type on manifolds</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear stochastic Schrödinger equation</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">observation of counting type</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum control</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum dynamic law of large numbers</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum filtering</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum interacting particles</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum mean field games</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Games</subfield><subfield code="d">Basel : MDPI, 2010</subfield><subfield code="g">12(2021), 1/7 vom: März, Seite 1-14</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)614096553</subfield><subfield code="w">(DE-600)2527220-2</subfield><subfield code="w">(DE-576)31395867X</subfield><subfield code="x">2073-4336</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1/7</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1-14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4336/12/1/7/pdf</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/g12010007</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://hdl.handle.net/10419/257490</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2403</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2403</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-LFER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">1/7</subfield><subfield code="c">3</subfield><subfield code="h">1-14</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">01</subfield><subfield code="x">0206</subfield><subfield code="b">3869306327</subfield><subfield code="y">x1z</subfield><subfield code="z">22-02-21</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="b">3883160814</subfield><subfield code="c">00</subfield><subfield code="f">--%%--</subfield><subfield code="d">--%%--</subfield><subfield code="e">n</subfield><subfield code="j">--%%--</subfield><subfield code="y">l01</subfield><subfield code="z">09-03-21</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="r">https://doi.org/10.3390/g12010007</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="r">https://www.mdpi.com/2073-4336/12/1/7/pdf</subfield></datafield></record></collection>
|
standort_str_mv |
--%%-- |
standort_iln_str_mv |
2403:--%%-- DE-LFER:--%%-- |
author |
Kolokolʹcov, Vassilij N. 1959- |
spellingShingle |
Kolokolʹcov, Vassilij N. 1959- misc Belavkin equation misc mean field games of jump type on manifolds misc nonlinear stochastic Schrödinger equation misc observation of counting type misc quantum control misc quantum dynamic law of large numbers misc quantum filtering misc quantum interacting particles misc quantum mean field games Quantum mean-field games with the observations of counting type |
authorStr |
Kolokolʹcov, Vassilij N. 1959- |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)614096553 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
typewithnormlink_str_mv |
Person@(DE-588)121728633 DifferentiatedPerson@(DE-588)121728633 |
collection |
KXP GVK SWB |
remote_str |
true |
last_changed_iln_str_mv |
26@22-02-21 2403@09-03-21 |
illustrated |
Not Illustrated |
issn |
2073-4336 |
topic_title |
Quantum mean-field games with the observations of counting type Vassili N. Kolokoltsov Belavkin equation (dpeaa)DE-206 mean field games of jump type on manifolds (dpeaa)DE-206 nonlinear stochastic Schrödinger equation (dpeaa)DE-206 observation of counting type (dpeaa)DE-206 quantum control (dpeaa)DE-206 quantum dynamic law of large numbers (dpeaa)DE-206 quantum filtering (dpeaa)DE-206 quantum interacting particles (dpeaa)DE-206 quantum mean field games (dpeaa)DE-206 |
topic |
misc Belavkin equation misc mean field games of jump type on manifolds misc nonlinear stochastic Schrödinger equation misc observation of counting type misc quantum control misc quantum dynamic law of large numbers misc quantum filtering misc quantum interacting particles misc quantum mean field games |
topic_unstemmed |
misc Belavkin equation misc mean field games of jump type on manifolds misc nonlinear stochastic Schrödinger equation misc observation of counting type misc quantum control misc quantum dynamic law of large numbers misc quantum filtering misc quantum interacting particles misc quantum mean field games |
topic_browse |
misc Belavkin equation misc mean field games of jump type on manifolds misc nonlinear stochastic Schrödinger equation misc observation of counting type misc quantum control misc quantum dynamic law of large numbers misc quantum filtering misc quantum interacting particles misc quantum mean field games |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
standort_txtP_mv |
--%%-- |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Games |
normlinkwithtype_str_mv |
(DE-588)121728633@Person (DE-588)121728633@DifferentiatedPerson |
hierarchy_parent_id |
614096553 |
signature |
--%%-- |
signature_str_mv |
--%%-- |
hierarchy_top_title |
Games |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)614096553 (DE-600)2527220-2 (DE-576)31395867X |
normlinkwithrole_str_mv |
(DE-588)121728633@@aut@@ |
title |
Quantum mean-field games with the observations of counting type |
ctrlnum |
(DE-627)1749096641 (DE-599)KXP1749096641 |
title_full |
Quantum mean-field games with the observations of counting type Vassili N. Kolokoltsov |
author_sort |
Kolokolʹcov, Vassilij N. 1959- |
journal |
Games |
journalStr |
Games |
callnumber-first-code |
- |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Kolokolʹcov, Vassilij N. |
selectkey |
26:x 2403:l |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Kolokolʹcov, Vassilij N. |
doi_str_mv |
10.3390/g12010007 |
normlink |
121728633 250016362 178687626 |
normlink_prefix_str_mv |
(DE-588)121728633 (DE-627)250016362 (DE-576)178687626 |
title_sort |
quantum mean-field games with the observations of counting type |
title_auth |
Quantum mean-field games with the observations of counting type |
abstract |
Quantum games and mean-field games (MFG) represent two important new branches of game theory. In a recent paper the author developed quantum MFGs merging these two branches. These quantum MFGs were based on the theory of continuous quantum observations and filtering of diffusive type. In the present paper we develop the analogous quantum MFG theory based on continuous quantum observations and filtering of counting type. However, proving existence and uniqueness of the solutions for resulting limiting forward-backward system based on jump-type processes on manifolds seems to be more complicated than for diffusions. In this paper we only prove that if a solution exists, then it gives an ϵ-Nash equilibrium for the corresponding N-player quantum game. The existence of solutions is suggested as an interesting open problem. |
abstractGer |
Quantum games and mean-field games (MFG) represent two important new branches of game theory. In a recent paper the author developed quantum MFGs merging these two branches. These quantum MFGs were based on the theory of continuous quantum observations and filtering of diffusive type. In the present paper we develop the analogous quantum MFG theory based on continuous quantum observations and filtering of counting type. However, proving existence and uniqueness of the solutions for resulting limiting forward-backward system based on jump-type processes on manifolds seems to be more complicated than for diffusions. In this paper we only prove that if a solution exists, then it gives an ϵ-Nash equilibrium for the corresponding N-player quantum game. The existence of solutions is suggested as an interesting open problem. |
abstract_unstemmed |
Quantum games and mean-field games (MFG) represent two important new branches of game theory. In a recent paper the author developed quantum MFGs merging these two branches. These quantum MFGs were based on the theory of continuous quantum observations and filtering of diffusive type. In the present paper we develop the analogous quantum MFG theory based on continuous quantum observations and filtering of counting type. However, proving existence and uniqueness of the solutions for resulting limiting forward-backward system based on jump-type processes on manifolds seems to be more complicated than for diffusions. In this paper we only prove that if a solution exists, then it gives an ϵ-Nash equilibrium for the corresponding N-player quantum game. The existence of solutions is suggested as an interesting open problem. |
collection_details |
GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 GBV_ILN_2403 ISIL_DE-LFER |
container_issue |
1/7 |
title_short |
Quantum mean-field games with the observations of counting type |
url |
https://www.mdpi.com/2073-4336/12/1/7/pdf https://doi.org/10.3390/g12010007 http://hdl.handle.net/10419/257490 |
ausleihindikator_str_mv |
26 2403:n |
rolewithnormlink_str_mv |
@@aut@@(DE-588)121728633 |
remote_bool |
true |
ppnlink |
614096553 |
GND_str_mv |
Kolokoltsov, Vassili N. Kolokoltsov, Vassili Kolokoltsov, Vassili Nikitich Kolokol'tzov, Vassili N. Kolokolʹcov, Vassilij Nikitič Kolokolʹcov, Vassilij N. |
GND_txt_mv |
Kolokoltsov, Vassili N. Kolokoltsov, Vassili Kolokoltsov, Vassili Nikitich Kolokol'tzov, Vassili N. Kolokolʹcov, Vassilij Nikitič Kolokolʹcov, Vassilij N. |
GND_txtF_mv |
Kolokoltsov, Vassili N. Kolokoltsov, Vassili Kolokoltsov, Vassili Nikitich Kolokol'tzov, Vassili N. Kolokolʹcov, Vassilij Nikitič Kolokolʹcov, Vassilij N. |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/g12010007 |
callnumber-a |
--%%-- |
up_date |
2024-07-04T18:51:17.016Z |
_version_ |
1803675581302177792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">1749096641</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220530071931.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210222s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/g12010007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10419/257490</subfield><subfield code="2">hdl</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1749096641</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1749096641</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolokolʹcov, Vassilij N.</subfield><subfield code="d">1959-</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)121728633</subfield><subfield code="0">(DE-627)250016362</subfield><subfield code="0">(DE-576)178687626</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum mean-field games with the observations of counting type</subfield><subfield code="c">Vassili N. Kolokoltsov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="506" ind1="0" ind2=" "><subfield code="q">DE-206</subfield><subfield code="a">Open Access</subfield><subfield code="e">Controlled Vocabulary for Access Rights</subfield><subfield code="u">http://purl.org/coar/access_right/c_abf2</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quantum games and mean-field games (MFG) represent two important new branches of game theory. In a recent paper the author developed quantum MFGs merging these two branches. These quantum MFGs were based on the theory of continuous quantum observations and filtering of diffusive type. In the present paper we develop the analogous quantum MFG theory based on continuous quantum observations and filtering of counting type. However, proving existence and uniqueness of the solutions for resulting limiting forward-backward system based on jump-type processes on manifolds seems to be more complicated than for diffusions. In this paper we only prove that if a solution exists, then it gives an ϵ-Nash equilibrium for the corresponding N-player quantum game. The existence of solutions is suggested as an interesting open problem.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="q">DE-206</subfield><subfield code="a">Namensnennung 4.0 International</subfield><subfield code="f">CC BY 4.0</subfield><subfield code="2">cc</subfield><subfield code="u">https://creativecommons.org/licenses/by/4.0/</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Belavkin equation</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mean field games of jump type on manifolds</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear stochastic Schrödinger equation</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">observation of counting type</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum control</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum dynamic law of large numbers</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum filtering</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum interacting particles</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum mean field games</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Games</subfield><subfield code="d">Basel : MDPI, 2010</subfield><subfield code="g">12(2021), 1/7 vom: März, Seite 1-14</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)614096553</subfield><subfield code="w">(DE-600)2527220-2</subfield><subfield code="w">(DE-576)31395867X</subfield><subfield code="x">2073-4336</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1/7</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1-14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4336/12/1/7/pdf</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/g12010007</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://hdl.handle.net/10419/257490</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2403</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2403</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-LFER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">1/7</subfield><subfield code="c">3</subfield><subfield code="h">1-14</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">01</subfield><subfield code="x">0206</subfield><subfield code="b">3869306327</subfield><subfield code="y">x1z</subfield><subfield code="z">22-02-21</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="b">3883160814</subfield><subfield code="c">00</subfield><subfield code="f">--%%--</subfield><subfield code="d">--%%--</subfield><subfield code="e">n</subfield><subfield code="j">--%%--</subfield><subfield code="y">l01</subfield><subfield code="z">09-03-21</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="r">https://doi.org/10.3390/g12010007</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="r">https://www.mdpi.com/2073-4336/12/1/7/pdf</subfield></datafield></record></collection>
|
score |
7.4007044 |