A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands
Autor*in: |
Queiroz, Layane Rodrigues de Souza [verfasserIn] Andretta, Marina [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International transactions in operational research - Oxford : Wiley-Blackwell, 1994, 29(2022), 6 vom: Nov., Seite 3486-3513 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2022 ; number:6 ; month:11 ; pages:3486-3513 |
Links: |
---|
DOI / URN: |
10.1111/itor.13122 |
---|
Katalog-ID: |
1810234786 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | 1810234786 | ||
003 | DE-627 | ||
005 | 20220816062442.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220714s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1111/itor.13122 |2 doi | |
035 | |a (DE-627)1810234786 | ||
035 | |a (DE-599)KXP1810234786 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Queiroz, Layane Rodrigues de Souza |e verfasserin |0 (DE-588)1265481032 |0 (DE-627)1814375279 |4 aut | |
245 | 1 | 2 | |a A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands |c Layane Rodrigues de Souza Queiroz and Marina Andretta |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
650 | 4 | |a irregular strip packing problem |7 (dpeaa)DE-206 | |
650 | 4 | |a stochastic programming |7 (dpeaa)DE-206 | |
650 | 4 | |a uncertain demands |7 (dpeaa)DE-206 | |
650 | 4 | |a variable neighborhood search |7 (dpeaa)DE-206 | |
700 | 1 | |a Andretta, Marina |e verfasserin |0 (DE-588)1029372853 |0 (DE-627)733301169 |0 (DE-576)377245135 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International transactions in operational research |d Oxford : Wiley-Blackwell, 1994 |g 29(2022), 6 vom: Nov., Seite 3486-3513 |h Online-Ressource |w (DE-627)320598004 |w (DE-600)2019815-2 |w (DE-576)273908545 |x 1475-3995 |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2022 |g number:6 |g month:11 |g pages:3486-3513 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/itor.13122 |x Verlag |z lizenzpflichtig |
856 | 4 | 0 | |u https://doi.org/10.1111/itor.13122 |x Resolving-System |z lizenzpflichtig |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ILN_26 | ||
912 | |a ISIL_DE-206 | ||
912 | |a SYSFLAG_1 | ||
912 | |a GBV_KXP | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 29 |j 2022 |e 6 |c 11 |h 3486-3513 | ||
980 | |2 26 |1 01 |x 0206 |b 4165926450 |y x1z |z 14-07-22 | ||
982 | |2 26 |1 00 |x DE-206 |b This work presents a tailored branch-and-cut algorithm for the two-dimensional irregular strip packing problem with uncertain demand for the items to be cut. A two-stage stochastic programming model is developed, considering a discrete and finite set of scenarios. The strip is discretized over a mesh of points in the model and includes constraints to ensure items are non-overlapping based on the concepts of inner-fit raster and no-fit raster. The algorithm considers lower and upper bounds from a heuristic based on the variable neighborhood search. This heuristic is also used during optimization to obtain new solutions and help to prune unsatisfactory nodes. The numerical results indicate the effectiveness of the proposed algorithm when observing other exact algorithms on the same problem without uncertainty. The algorithm can also provide optimal solutions for instances with uncertainty having more than 60 scenarios within some hours of execution. Besides, the conclusions show it is preferable to handle uncertainty to achieve minimum cost decisions. |
author_variant |
l r d s q lrds lrdsq m a ma |
---|---|
matchkey_str |
article:14753995:2022----::bacaduagrtmotereuasrpaknpolm |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1111/itor.13122 doi (DE-627)1810234786 (DE-599)KXP1810234786 DE-627 ger DE-627 rda eng Queiroz, Layane Rodrigues de Souza verfasserin (DE-588)1265481032 (DE-627)1814375279 aut A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands Layane Rodrigues de Souza Queiroz and Marina Andretta 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier irregular strip packing problem (dpeaa)DE-206 stochastic programming (dpeaa)DE-206 uncertain demands (dpeaa)DE-206 variable neighborhood search (dpeaa)DE-206 Andretta, Marina verfasserin (DE-588)1029372853 (DE-627)733301169 (DE-576)377245135 aut Enthalten in International transactions in operational research Oxford : Wiley-Blackwell, 1994 29(2022), 6 vom: Nov., Seite 3486-3513 Online-Ressource (DE-627)320598004 (DE-600)2019815-2 (DE-576)273908545 1475-3995 nnns volume:29 year:2022 number:6 month:11 pages:3486-3513 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/itor.13122 Verlag lizenzpflichtig https://doi.org/10.1111/itor.13122 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 6 11 3486-3513 26 01 0206 4165926450 x1z 14-07-22 26 00 DE-206 This work presents a tailored branch-and-cut algorithm for the two-dimensional irregular strip packing problem with uncertain demand for the items to be cut. A two-stage stochastic programming model is developed, considering a discrete and finite set of scenarios. The strip is discretized over a mesh of points in the model and includes constraints to ensure items are non-overlapping based on the concepts of inner-fit raster and no-fit raster. The algorithm considers lower and upper bounds from a heuristic based on the variable neighborhood search. This heuristic is also used during optimization to obtain new solutions and help to prune unsatisfactory nodes. The numerical results indicate the effectiveness of the proposed algorithm when observing other exact algorithms on the same problem without uncertainty. The algorithm can also provide optimal solutions for instances with uncertainty having more than 60 scenarios within some hours of execution. Besides, the conclusions show it is preferable to handle uncertainty to achieve minimum cost decisions. |
spelling |
10.1111/itor.13122 doi (DE-627)1810234786 (DE-599)KXP1810234786 DE-627 ger DE-627 rda eng Queiroz, Layane Rodrigues de Souza verfasserin (DE-588)1265481032 (DE-627)1814375279 aut A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands Layane Rodrigues de Souza Queiroz and Marina Andretta 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier irregular strip packing problem (dpeaa)DE-206 stochastic programming (dpeaa)DE-206 uncertain demands (dpeaa)DE-206 variable neighborhood search (dpeaa)DE-206 Andretta, Marina verfasserin (DE-588)1029372853 (DE-627)733301169 (DE-576)377245135 aut Enthalten in International transactions in operational research Oxford : Wiley-Blackwell, 1994 29(2022), 6 vom: Nov., Seite 3486-3513 Online-Ressource (DE-627)320598004 (DE-600)2019815-2 (DE-576)273908545 1475-3995 nnns volume:29 year:2022 number:6 month:11 pages:3486-3513 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/itor.13122 Verlag lizenzpflichtig https://doi.org/10.1111/itor.13122 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 6 11 3486-3513 26 01 0206 4165926450 x1z 14-07-22 26 00 DE-206 This work presents a tailored branch-and-cut algorithm for the two-dimensional irregular strip packing problem with uncertain demand for the items to be cut. A two-stage stochastic programming model is developed, considering a discrete and finite set of scenarios. The strip is discretized over a mesh of points in the model and includes constraints to ensure items are non-overlapping based on the concepts of inner-fit raster and no-fit raster. The algorithm considers lower and upper bounds from a heuristic based on the variable neighborhood search. This heuristic is also used during optimization to obtain new solutions and help to prune unsatisfactory nodes. The numerical results indicate the effectiveness of the proposed algorithm when observing other exact algorithms on the same problem without uncertainty. The algorithm can also provide optimal solutions for instances with uncertainty having more than 60 scenarios within some hours of execution. Besides, the conclusions show it is preferable to handle uncertainty to achieve minimum cost decisions. |
allfields_unstemmed |
10.1111/itor.13122 doi (DE-627)1810234786 (DE-599)KXP1810234786 DE-627 ger DE-627 rda eng Queiroz, Layane Rodrigues de Souza verfasserin (DE-588)1265481032 (DE-627)1814375279 aut A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands Layane Rodrigues de Souza Queiroz and Marina Andretta 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier irregular strip packing problem (dpeaa)DE-206 stochastic programming (dpeaa)DE-206 uncertain demands (dpeaa)DE-206 variable neighborhood search (dpeaa)DE-206 Andretta, Marina verfasserin (DE-588)1029372853 (DE-627)733301169 (DE-576)377245135 aut Enthalten in International transactions in operational research Oxford : Wiley-Blackwell, 1994 29(2022), 6 vom: Nov., Seite 3486-3513 Online-Ressource (DE-627)320598004 (DE-600)2019815-2 (DE-576)273908545 1475-3995 nnns volume:29 year:2022 number:6 month:11 pages:3486-3513 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/itor.13122 Verlag lizenzpflichtig https://doi.org/10.1111/itor.13122 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 6 11 3486-3513 26 01 0206 4165926450 x1z 14-07-22 26 00 DE-206 This work presents a tailored branch-and-cut algorithm for the two-dimensional irregular strip packing problem with uncertain demand for the items to be cut. A two-stage stochastic programming model is developed, considering a discrete and finite set of scenarios. The strip is discretized over a mesh of points in the model and includes constraints to ensure items are non-overlapping based on the concepts of inner-fit raster and no-fit raster. The algorithm considers lower and upper bounds from a heuristic based on the variable neighborhood search. This heuristic is also used during optimization to obtain new solutions and help to prune unsatisfactory nodes. The numerical results indicate the effectiveness of the proposed algorithm when observing other exact algorithms on the same problem without uncertainty. The algorithm can also provide optimal solutions for instances with uncertainty having more than 60 scenarios within some hours of execution. Besides, the conclusions show it is preferable to handle uncertainty to achieve minimum cost decisions. |
allfieldsGer |
10.1111/itor.13122 doi (DE-627)1810234786 (DE-599)KXP1810234786 DE-627 ger DE-627 rda eng Queiroz, Layane Rodrigues de Souza verfasserin (DE-588)1265481032 (DE-627)1814375279 aut A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands Layane Rodrigues de Souza Queiroz and Marina Andretta 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier irregular strip packing problem (dpeaa)DE-206 stochastic programming (dpeaa)DE-206 uncertain demands (dpeaa)DE-206 variable neighborhood search (dpeaa)DE-206 Andretta, Marina verfasserin (DE-588)1029372853 (DE-627)733301169 (DE-576)377245135 aut Enthalten in International transactions in operational research Oxford : Wiley-Blackwell, 1994 29(2022), 6 vom: Nov., Seite 3486-3513 Online-Ressource (DE-627)320598004 (DE-600)2019815-2 (DE-576)273908545 1475-3995 nnns volume:29 year:2022 number:6 month:11 pages:3486-3513 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/itor.13122 Verlag lizenzpflichtig https://doi.org/10.1111/itor.13122 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 6 11 3486-3513 26 01 0206 4165926450 x1z 14-07-22 26 00 DE-206 This work presents a tailored branch-and-cut algorithm for the two-dimensional irregular strip packing problem with uncertain demand for the items to be cut. A two-stage stochastic programming model is developed, considering a discrete and finite set of scenarios. The strip is discretized over a mesh of points in the model and includes constraints to ensure items are non-overlapping based on the concepts of inner-fit raster and no-fit raster. The algorithm considers lower and upper bounds from a heuristic based on the variable neighborhood search. This heuristic is also used during optimization to obtain new solutions and help to prune unsatisfactory nodes. The numerical results indicate the effectiveness of the proposed algorithm when observing other exact algorithms on the same problem without uncertainty. The algorithm can also provide optimal solutions for instances with uncertainty having more than 60 scenarios within some hours of execution. Besides, the conclusions show it is preferable to handle uncertainty to achieve minimum cost decisions. |
allfieldsSound |
10.1111/itor.13122 doi (DE-627)1810234786 (DE-599)KXP1810234786 DE-627 ger DE-627 rda eng Queiroz, Layane Rodrigues de Souza verfasserin (DE-588)1265481032 (DE-627)1814375279 aut A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands Layane Rodrigues de Souza Queiroz and Marina Andretta 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier irregular strip packing problem (dpeaa)DE-206 stochastic programming (dpeaa)DE-206 uncertain demands (dpeaa)DE-206 variable neighborhood search (dpeaa)DE-206 Andretta, Marina verfasserin (DE-588)1029372853 (DE-627)733301169 (DE-576)377245135 aut Enthalten in International transactions in operational research Oxford : Wiley-Blackwell, 1994 29(2022), 6 vom: Nov., Seite 3486-3513 Online-Ressource (DE-627)320598004 (DE-600)2019815-2 (DE-576)273908545 1475-3995 nnns volume:29 year:2022 number:6 month:11 pages:3486-3513 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/itor.13122 Verlag lizenzpflichtig https://doi.org/10.1111/itor.13122 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 6 11 3486-3513 26 01 0206 4165926450 x1z 14-07-22 26 00 DE-206 This work presents a tailored branch-and-cut algorithm for the two-dimensional irregular strip packing problem with uncertain demand for the items to be cut. A two-stage stochastic programming model is developed, considering a discrete and finite set of scenarios. The strip is discretized over a mesh of points in the model and includes constraints to ensure items are non-overlapping based on the concepts of inner-fit raster and no-fit raster. The algorithm considers lower and upper bounds from a heuristic based on the variable neighborhood search. This heuristic is also used during optimization to obtain new solutions and help to prune unsatisfactory nodes. The numerical results indicate the effectiveness of the proposed algorithm when observing other exact algorithms on the same problem without uncertainty. The algorithm can also provide optimal solutions for instances with uncertainty having more than 60 scenarios within some hours of execution. Besides, the conclusions show it is preferable to handle uncertainty to achieve minimum cost decisions. |
language |
English |
source |
Enthalten in International transactions in operational research 29(2022), 6 vom: Nov., Seite 3486-3513 volume:29 year:2022 number:6 month:11 pages:3486-3513 |
sourceStr |
Enthalten in International transactions in operational research 29(2022), 6 vom: Nov., Seite 3486-3513 volume:29 year:2022 number:6 month:11 pages:3486-3513 |
format_phy_str_mv |
Article |
building |
26:1 |
institution |
findex.gbv.de |
selectbib_iln_str_mv |
26@1z |
topic_facet |
irregular strip packing problem stochastic programming uncertain demands variable neighborhood search |
sw_local_iln_str_mv |
26: DE-206: |
isfreeaccess_bool |
false |
container_title |
International transactions in operational research |
authorswithroles_txt_mv |
Queiroz, Layane Rodrigues de Souza @@aut@@ Andretta, Marina @@aut@@ |
publishDateDaySort_date |
2022-11-01T00:00:00Z |
hierarchy_top_id |
320598004 |
id |
1810234786 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">1810234786</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220816062442.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220714s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/itor.13122</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1810234786</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1810234786</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Queiroz, Layane Rodrigues de Souza</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1265481032</subfield><subfield code="0">(DE-627)1814375279</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands</subfield><subfield code="c">Layane Rodrigues de Souza Queiroz and Marina Andretta</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">irregular strip packing problem</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic programming</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertain demands</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variable neighborhood search</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andretta, Marina</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1029372853</subfield><subfield code="0">(DE-627)733301169</subfield><subfield code="0">(DE-576)377245135</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International transactions in operational research</subfield><subfield code="d">Oxford : Wiley-Blackwell, 1994</subfield><subfield code="g">29(2022), 6 vom: Nov., Seite 3486-3513</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320598004</subfield><subfield code="w">(DE-600)2019815-2</subfield><subfield code="w">(DE-576)273908545</subfield><subfield code="x">1475-3995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:3486-3513</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/itor.13122</subfield><subfield code="x">Verlag</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1111/itor.13122</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">3486-3513</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">01</subfield><subfield code="x">0206</subfield><subfield code="b">4165926450</subfield><subfield code="y">x1z</subfield><subfield code="z">14-07-22</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="b">This work presents a tailored branch-and-cut algorithm for the two-dimensional irregular strip packing problem with uncertain demand for the items to be cut. A two-stage stochastic programming model is developed, considering a discrete and finite set of scenarios. The strip is discretized over a mesh of points in the model and includes constraints to ensure items are non-overlapping based on the concepts of inner-fit raster and no-fit raster. The algorithm considers lower and upper bounds from a heuristic based on the variable neighborhood search. This heuristic is also used during optimization to obtain new solutions and help to prune unsatisfactory nodes. The numerical results indicate the effectiveness of the proposed algorithm when observing other exact algorithms on the same problem without uncertainty. The algorithm can also provide optimal solutions for instances with uncertainty having more than 60 scenarios within some hours of execution. Besides, the conclusions show it is preferable to handle uncertainty to achieve minimum cost decisions.</subfield></datafield></record></collection>
|
author |
Queiroz, Layane Rodrigues de Souza |
spellingShingle |
Queiroz, Layane Rodrigues de Souza misc irregular strip packing problem misc stochastic programming misc uncertain demands misc variable neighborhood search A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands |
authorStr |
Queiroz, Layane Rodrigues de Souza |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320598004 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
typewithnormlink_str_mv |
Person@(DE-588)1265481032 DifferentiatedPerson@(DE-588)1265481032 Person@(DE-588)1029372853 DifferentiatedPerson@(DE-588)1029372853 |
collection |
KXP GVK SWB |
remote_str |
true |
last_changed_iln_str_mv |
26@14-07-22 |
illustrated |
Not Illustrated |
issn |
1475-3995 |
topic_title |
26 00 DE-206 This work presents a tailored branch-and-cut algorithm for the two-dimensional irregular strip packing problem with uncertain demand for the items to be cut. A two-stage stochastic programming model is developed, considering a discrete and finite set of scenarios. The strip is discretized over a mesh of points in the model and includes constraints to ensure items are non-overlapping based on the concepts of inner-fit raster and no-fit raster. The algorithm considers lower and upper bounds from a heuristic based on the variable neighborhood search. This heuristic is also used during optimization to obtain new solutions and help to prune unsatisfactory nodes. The numerical results indicate the effectiveness of the proposed algorithm when observing other exact algorithms on the same problem without uncertainty. The algorithm can also provide optimal solutions for instances with uncertainty having more than 60 scenarios within some hours of execution. Besides, the conclusions show it is preferable to handle uncertainty to achieve minimum cost decisions A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands Layane Rodrigues de Souza Queiroz and Marina Andretta irregular strip packing problem (dpeaa)DE-206 stochastic programming (dpeaa)DE-206 uncertain demands (dpeaa)DE-206 variable neighborhood search (dpeaa)DE-206 |
topic |
misc irregular strip packing problem misc stochastic programming misc uncertain demands misc variable neighborhood search |
topic_unstemmed |
misc irregular strip packing problem misc stochastic programming misc uncertain demands misc variable neighborhood search |
topic_browse |
misc irregular strip packing problem misc stochastic programming misc uncertain demands misc variable neighborhood search |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International transactions in operational research |
normlinkwithtype_str_mv |
(DE-588)1265481032@Person (DE-588)1265481032@DifferentiatedPerson (DE-588)1029372853@Person (DE-588)1029372853@DifferentiatedPerson |
hierarchy_parent_id |
320598004 |
hierarchy_top_title |
International transactions in operational research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320598004 (DE-600)2019815-2 (DE-576)273908545 |
normlinkwithrole_str_mv |
(DE-588)1265481032@@aut@@ (DE-588)1029372853@@aut@@ |
title |
A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands |
ctrlnum |
(DE-627)1810234786 (DE-599)KXP1810234786 |
title_full |
A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands Layane Rodrigues de Souza Queiroz and Marina Andretta |
author_sort |
Queiroz, Layane Rodrigues de Souza |
journal |
International transactions in operational research |
journalStr |
International transactions in operational research |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
3486 |
author_browse |
Queiroz, Layane Rodrigues de Souza Andretta, Marina |
selectkey |
26:x |
container_volume |
29 |
format_se |
Elektronische Aufsätze |
author-letter |
Queiroz, Layane Rodrigues de Souza |
doi_str_mv |
10.1111/itor.13122 |
normlink |
1265481032 1814375279 1029372853 733301169 377245135 |
normlink_prefix_str_mv |
(DE-588)1265481032 (DE-627)1814375279 (DE-588)1029372853 (DE-627)733301169 (DE-576)377245135 |
author2-role |
verfasserin |
title_sort |
branch-and-cut algorithm for the irregular strip packing problem with uncertain demands |
title_auth |
A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands |
collection_details |
GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
6 |
title_short |
A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands |
url |
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/itor.13122 https://doi.org/10.1111/itor.13122 |
ausleihindikator_str_mv |
26 |
rolewithnormlink_str_mv |
@@aut@@(DE-588)1265481032 @@aut@@(DE-588)1029372853 |
remote_bool |
true |
author2 |
Andretta, Marina |
author2Str |
Andretta, Marina |
ppnlink |
320598004 |
GND_str_mv |
De Souza Queiroz, Layane Rodrigues Souza Queiroz, Layane Rodrigues de Queiroz, Layane Rodrigues de Souza Queiroz, Layane Queiroz, Layane Rodrigues de Souza Andretta, M. Andretta, Marina |
GND_txt_mv |
De Souza Queiroz, Layane Rodrigues Souza Queiroz, Layane Rodrigues de Queiroz, Layane Rodrigues de Souza Queiroz, Layane Queiroz, Layane Rodrigues de Souza Andretta, M. Andretta, Marina |
GND_txtF_mv |
De Souza Queiroz, Layane Rodrigues Souza Queiroz, Layane Rodrigues de Queiroz, Layane Rodrigues de Souza Queiroz, Layane Queiroz, Layane Rodrigues de Souza Andretta, M. Andretta, Marina |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1111/itor.13122 |
up_date |
2024-07-04T15:35:57.478Z |
_version_ |
1803663292477997056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">1810234786</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220816062442.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220714s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/itor.13122</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1810234786</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1810234786</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Queiroz, Layane Rodrigues de Souza</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1265481032</subfield><subfield code="0">(DE-627)1814375279</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A branch-and-cut algorithm for the irregular strip packing problem with uncertain demands</subfield><subfield code="c">Layane Rodrigues de Souza Queiroz and Marina Andretta</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">irregular strip packing problem</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic programming</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertain demands</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variable neighborhood search</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andretta, Marina</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1029372853</subfield><subfield code="0">(DE-627)733301169</subfield><subfield code="0">(DE-576)377245135</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International transactions in operational research</subfield><subfield code="d">Oxford : Wiley-Blackwell, 1994</subfield><subfield code="g">29(2022), 6 vom: Nov., Seite 3486-3513</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320598004</subfield><subfield code="w">(DE-600)2019815-2</subfield><subfield code="w">(DE-576)273908545</subfield><subfield code="x">1475-3995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:3486-3513</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/itor.13122</subfield><subfield code="x">Verlag</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1111/itor.13122</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">3486-3513</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">01</subfield><subfield code="x">0206</subfield><subfield code="b">4165926450</subfield><subfield code="y">x1z</subfield><subfield code="z">14-07-22</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="b">This work presents a tailored branch-and-cut algorithm for the two-dimensional irregular strip packing problem with uncertain demand for the items to be cut. A two-stage stochastic programming model is developed, considering a discrete and finite set of scenarios. The strip is discretized over a mesh of points in the model and includes constraints to ensure items are non-overlapping based on the concepts of inner-fit raster and no-fit raster. The algorithm considers lower and upper bounds from a heuristic based on the variable neighborhood search. This heuristic is also used during optimization to obtain new solutions and help to prune unsatisfactory nodes. The numerical results indicate the effectiveness of the proposed algorithm when observing other exact algorithms on the same problem without uncertainty. The algorithm can also provide optimal solutions for instances with uncertainty having more than 60 scenarios within some hours of execution. Besides, the conclusions show it is preferable to handle uncertainty to achieve minimum cost decisions.</subfield></datafield></record></collection>
|
score |
7.400791 |