Dependence and phase changes in random m-ary search trees
We study the joint asymptotic behavior of the space requirement and the total path length (either summing over all root-key distances or over all root-node distances) in random m-ary search trees. The covariance turns out to exhibit a change of asymptotic behavior: it is essentially linear when 3m13...
Ausführliche Beschreibung
Autor*in: |
Chern, Hua-Huai [verfasserIn] Fuchs, Michael [verfasserIn] Hwang, Hsien-Kuei [verfasserIn] Neininger, Ralph - 1970- [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|---|
Ausgabe: |
Version of Record online: 30 August 2016 |
Schlagwörter: |
---|
Anmerkung: |
Last seen: 01.12.2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Random structures & algorithms - New York, NY [u.a.] : Wiley, 1990, Volume 50(2017), Issue 3, pp. 353-379 |
---|---|
Übergeordnetes Werk: |
volume:50 ; year:2017 ; number:3 ; pages:353-379 |
Links: |
---|
DOI / URN: |
10.1002/rsa.20659 |
---|
Katalog-ID: |
1824156324 |
---|
LEADER | 01000naa a2200265 4500 | ||
---|---|---|---|
001 | 1824156324 | ||
003 | DE-627 | ||
005 | 20221201133009.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221201s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/rsa.20659 |2 doi | |
035 | |a (DE-627)1824156324 | ||
035 | |a (DE-599)KXP1824156324 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Chern, Hua-Huai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dependence and phase changes in random m-ary search trees |
250 | |a Version of Record online: 30 August 2016 | ||
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Last seen: 01.12.2022 | ||
520 | |a We study the joint asymptotic behavior of the space requirement and the total path length (either summing over all root-key distances or over all root-node distances) in random m-ary search trees. The covariance turns out to exhibit a change of asymptotic behavior: it is essentially linear when 3m13, but becomes of higher order when m14. Surprisingly, the corresponding asymptotic correlation coefficient tends to zero when 3m26, but is periodically oscillating for larger m, and we also prove asymptotic independence when 3m26. Such a less anticipated phenomenon is not exceptional and our results can be extended in two directions: one for more general shape parameters, and the other for other classes of random log-trees such as fringe-balanced binary search trees and quadtrees. The methods of proof combine asymptotic transfer for the underlying recurrence relations with the contraction method. | ||
650 | 4 | |a M-ary search tree | |
650 | 4 | |a Correlation | |
650 | 4 | |a Dependence | |
650 | 4 | |a Recurrence relations | |
650 | 4 | |a Asymptotic analysis | |
650 | 4 | |a Limit law | |
650 | 4 | |a Asymptotic transfer | |
650 | 4 | |a Contraction method | |
700 | 1 | |a Fuchs, Michael |e verfasserin |4 aut | |
700 | 1 | |a Hwang, Hsien-Kuei |e verfasserin |4 aut | |
700 | 1 | |a Neininger, Ralph |d 1970- |e verfasserin |0 (DE-588)121754847 |0 (DE-627)585439435 |0 (DE-576)301177910 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Random structures & algorithms |d New York, NY [u.a.] : Wiley, 1990 |g Volume 50(2017), Issue 3, pp. 353-379 |h Online-Ressource |w (DE-627)306711141 |w (DE-600)1500812-5 |w (DE-576)082436185 |x 1098-2418 |7 nnns |
773 | 1 | 8 | |g volume:50 |g year:2017 |g number:3 |g pages:353-379 |
856 | 4 | 0 | |u https://doi.org/10.1002/rsa.20659 |x Verlag |x Resolving-System |y Full text at Publisher |z lizenzpflichtig |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ILN_2088 | ||
912 | |a ISIL_DE-Frei3c | ||
912 | |a SYSFLAG_1 | ||
912 | |a GBV_KXP | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 50 |j 2017 |e 3 |h 353-379 |y Volume 50(2017), Issue 3, pp. 353-379 | ||
980 | |2 2088 |1 01 |x DE-Frei3c |b 4222651133 |c 00 |f --%%-- |d --%%-- |e --%%-- |j n |k Funding text: Partially supported by [...] Mathematisches Forschungsinstitut Oberwolfach (to H.-K.H.) [...] |y l01 |z 01-12-22 |
author_variant |
h h c hhc m f mf h k h hkh r n rn |
---|---|
matchkey_str |
article:10982418:2017----::eednenpaehneirnomr |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1002/rsa.20659 doi (DE-627)1824156324 (DE-599)KXP1824156324 DE-627 ger DE-627 rda eng Chern, Hua-Huai verfasserin aut Dependence and phase changes in random m-ary search trees Version of Record online: 30 August 2016 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 01.12.2022 We study the joint asymptotic behavior of the space requirement and the total path length (either summing over all root-key distances or over all root-node distances) in random m-ary search trees. The covariance turns out to exhibit a change of asymptotic behavior: it is essentially linear when 3m13, but becomes of higher order when m14. Surprisingly, the corresponding asymptotic correlation coefficient tends to zero when 3m26, but is periodically oscillating for larger m, and we also prove asymptotic independence when 3m26. Such a less anticipated phenomenon is not exceptional and our results can be extended in two directions: one for more general shape parameters, and the other for other classes of random log-trees such as fringe-balanced binary search trees and quadtrees. The methods of proof combine asymptotic transfer for the underlying recurrence relations with the contraction method. M-ary search tree Correlation Dependence Recurrence relations Asymptotic analysis Limit law Asymptotic transfer Contraction method Fuchs, Michael verfasserin aut Hwang, Hsien-Kuei verfasserin aut Neininger, Ralph 1970- verfasserin (DE-588)121754847 (DE-627)585439435 (DE-576)301177910 aut Enthalten in Random structures & algorithms New York, NY [u.a.] : Wiley, 1990 Volume 50(2017), Issue 3, pp. 353-379 Online-Ressource (DE-627)306711141 (DE-600)1500812-5 (DE-576)082436185 1098-2418 nnns volume:50 year:2017 number:3 pages:353-379 https://doi.org/10.1002/rsa.20659 Verlag Resolving-System Full text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2017 3 353-379 Volume 50(2017), Issue 3, pp. 353-379 2088 01 DE-Frei3c 4222651133 00 --%%-- --%%-- --%%-- n Funding text: Partially supported by [...] Mathematisches Forschungsinstitut Oberwolfach (to H.-K.H.) [...] l01 01-12-22 |
spelling |
10.1002/rsa.20659 doi (DE-627)1824156324 (DE-599)KXP1824156324 DE-627 ger DE-627 rda eng Chern, Hua-Huai verfasserin aut Dependence and phase changes in random m-ary search trees Version of Record online: 30 August 2016 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 01.12.2022 We study the joint asymptotic behavior of the space requirement and the total path length (either summing over all root-key distances or over all root-node distances) in random m-ary search trees. The covariance turns out to exhibit a change of asymptotic behavior: it is essentially linear when 3m13, but becomes of higher order when m14. Surprisingly, the corresponding asymptotic correlation coefficient tends to zero when 3m26, but is periodically oscillating for larger m, and we also prove asymptotic independence when 3m26. Such a less anticipated phenomenon is not exceptional and our results can be extended in two directions: one for more general shape parameters, and the other for other classes of random log-trees such as fringe-balanced binary search trees and quadtrees. The methods of proof combine asymptotic transfer for the underlying recurrence relations with the contraction method. M-ary search tree Correlation Dependence Recurrence relations Asymptotic analysis Limit law Asymptotic transfer Contraction method Fuchs, Michael verfasserin aut Hwang, Hsien-Kuei verfasserin aut Neininger, Ralph 1970- verfasserin (DE-588)121754847 (DE-627)585439435 (DE-576)301177910 aut Enthalten in Random structures & algorithms New York, NY [u.a.] : Wiley, 1990 Volume 50(2017), Issue 3, pp. 353-379 Online-Ressource (DE-627)306711141 (DE-600)1500812-5 (DE-576)082436185 1098-2418 nnns volume:50 year:2017 number:3 pages:353-379 https://doi.org/10.1002/rsa.20659 Verlag Resolving-System Full text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2017 3 353-379 Volume 50(2017), Issue 3, pp. 353-379 2088 01 DE-Frei3c 4222651133 00 --%%-- --%%-- --%%-- n Funding text: Partially supported by [...] Mathematisches Forschungsinstitut Oberwolfach (to H.-K.H.) [...] l01 01-12-22 |
allfields_unstemmed |
10.1002/rsa.20659 doi (DE-627)1824156324 (DE-599)KXP1824156324 DE-627 ger DE-627 rda eng Chern, Hua-Huai verfasserin aut Dependence and phase changes in random m-ary search trees Version of Record online: 30 August 2016 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 01.12.2022 We study the joint asymptotic behavior of the space requirement and the total path length (either summing over all root-key distances or over all root-node distances) in random m-ary search trees. The covariance turns out to exhibit a change of asymptotic behavior: it is essentially linear when 3m13, but becomes of higher order when m14. Surprisingly, the corresponding asymptotic correlation coefficient tends to zero when 3m26, but is periodically oscillating for larger m, and we also prove asymptotic independence when 3m26. Such a less anticipated phenomenon is not exceptional and our results can be extended in two directions: one for more general shape parameters, and the other for other classes of random log-trees such as fringe-balanced binary search trees and quadtrees. The methods of proof combine asymptotic transfer for the underlying recurrence relations with the contraction method. M-ary search tree Correlation Dependence Recurrence relations Asymptotic analysis Limit law Asymptotic transfer Contraction method Fuchs, Michael verfasserin aut Hwang, Hsien-Kuei verfasserin aut Neininger, Ralph 1970- verfasserin (DE-588)121754847 (DE-627)585439435 (DE-576)301177910 aut Enthalten in Random structures & algorithms New York, NY [u.a.] : Wiley, 1990 Volume 50(2017), Issue 3, pp. 353-379 Online-Ressource (DE-627)306711141 (DE-600)1500812-5 (DE-576)082436185 1098-2418 nnns volume:50 year:2017 number:3 pages:353-379 https://doi.org/10.1002/rsa.20659 Verlag Resolving-System Full text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2017 3 353-379 Volume 50(2017), Issue 3, pp. 353-379 2088 01 DE-Frei3c 4222651133 00 --%%-- --%%-- --%%-- n Funding text: Partially supported by [...] Mathematisches Forschungsinstitut Oberwolfach (to H.-K.H.) [...] l01 01-12-22 |
allfieldsGer |
10.1002/rsa.20659 doi (DE-627)1824156324 (DE-599)KXP1824156324 DE-627 ger DE-627 rda eng Chern, Hua-Huai verfasserin aut Dependence and phase changes in random m-ary search trees Version of Record online: 30 August 2016 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 01.12.2022 We study the joint asymptotic behavior of the space requirement and the total path length (either summing over all root-key distances or over all root-node distances) in random m-ary search trees. The covariance turns out to exhibit a change of asymptotic behavior: it is essentially linear when 3m13, but becomes of higher order when m14. Surprisingly, the corresponding asymptotic correlation coefficient tends to zero when 3m26, but is periodically oscillating for larger m, and we also prove asymptotic independence when 3m26. Such a less anticipated phenomenon is not exceptional and our results can be extended in two directions: one for more general shape parameters, and the other for other classes of random log-trees such as fringe-balanced binary search trees and quadtrees. The methods of proof combine asymptotic transfer for the underlying recurrence relations with the contraction method. M-ary search tree Correlation Dependence Recurrence relations Asymptotic analysis Limit law Asymptotic transfer Contraction method Fuchs, Michael verfasserin aut Hwang, Hsien-Kuei verfasserin aut Neininger, Ralph 1970- verfasserin (DE-588)121754847 (DE-627)585439435 (DE-576)301177910 aut Enthalten in Random structures & algorithms New York, NY [u.a.] : Wiley, 1990 Volume 50(2017), Issue 3, pp. 353-379 Online-Ressource (DE-627)306711141 (DE-600)1500812-5 (DE-576)082436185 1098-2418 nnns volume:50 year:2017 number:3 pages:353-379 https://doi.org/10.1002/rsa.20659 Verlag Resolving-System Full text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2017 3 353-379 Volume 50(2017), Issue 3, pp. 353-379 2088 01 DE-Frei3c 4222651133 00 --%%-- --%%-- --%%-- n Funding text: Partially supported by [...] Mathematisches Forschungsinstitut Oberwolfach (to H.-K.H.) [...] l01 01-12-22 |
allfieldsSound |
10.1002/rsa.20659 doi (DE-627)1824156324 (DE-599)KXP1824156324 DE-627 ger DE-627 rda eng Chern, Hua-Huai verfasserin aut Dependence and phase changes in random m-ary search trees Version of Record online: 30 August 2016 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 01.12.2022 We study the joint asymptotic behavior of the space requirement and the total path length (either summing over all root-key distances or over all root-node distances) in random m-ary search trees. The covariance turns out to exhibit a change of asymptotic behavior: it is essentially linear when 3m13, but becomes of higher order when m14. Surprisingly, the corresponding asymptotic correlation coefficient tends to zero when 3m26, but is periodically oscillating for larger m, and we also prove asymptotic independence when 3m26. Such a less anticipated phenomenon is not exceptional and our results can be extended in two directions: one for more general shape parameters, and the other for other classes of random log-trees such as fringe-balanced binary search trees and quadtrees. The methods of proof combine asymptotic transfer for the underlying recurrence relations with the contraction method. M-ary search tree Correlation Dependence Recurrence relations Asymptotic analysis Limit law Asymptotic transfer Contraction method Fuchs, Michael verfasserin aut Hwang, Hsien-Kuei verfasserin aut Neininger, Ralph 1970- verfasserin (DE-588)121754847 (DE-627)585439435 (DE-576)301177910 aut Enthalten in Random structures & algorithms New York, NY [u.a.] : Wiley, 1990 Volume 50(2017), Issue 3, pp. 353-379 Online-Ressource (DE-627)306711141 (DE-600)1500812-5 (DE-576)082436185 1098-2418 nnns volume:50 year:2017 number:3 pages:353-379 https://doi.org/10.1002/rsa.20659 Verlag Resolving-System Full text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2017 3 353-379 Volume 50(2017), Issue 3, pp. 353-379 2088 01 DE-Frei3c 4222651133 00 --%%-- --%%-- --%%-- n Funding text: Partially supported by [...] Mathematisches Forschungsinstitut Oberwolfach (to H.-K.H.) [...] l01 01-12-22 |
language |
English |
source |
Enthalten in Random structures & algorithms Volume 50(2017), Issue 3, pp. 353-379 volume:50 year:2017 number:3 pages:353-379 |
sourceStr |
Enthalten in Random structures & algorithms Volume 50(2017), Issue 3, pp. 353-379 volume:50 year:2017 number:3 pages:353-379 |
format_phy_str_mv |
Article |
building |
2088:0 |
institution |
findex.gbv.de |
selectbib_iln_str_mv |
2088@01 |
topic_facet |
M-ary search tree Correlation Dependence Recurrence relations Asymptotic analysis Limit law Asymptotic transfer Contraction method |
isfreeaccess_bool |
false |
container_title |
Random structures & algorithms |
authorswithroles_txt_mv |
Chern, Hua-Huai @@aut@@ Fuchs, Michael @@aut@@ Hwang, Hsien-Kuei @@aut@@ Neininger, Ralph @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
306711141 |
id |
1824156324 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a2200265 4500</leader><controlfield tag="001">1824156324</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20221201133009.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221201s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/rsa.20659</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1824156324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1824156324</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chern, Hua-Huai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dependence and phase changes in random m-ary search trees</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Version of Record online: 30 August 2016</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Last seen: 01.12.2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study the joint asymptotic behavior of the space requirement and the total path length (either summing over all root-key distances or over all root-node distances) in random m-ary search trees. The covariance turns out to exhibit a change of asymptotic behavior: it is essentially linear when 3m13, but becomes of higher order when m14. Surprisingly, the corresponding asymptotic correlation coefficient tends to zero when 3m26, but is periodically oscillating for larger m, and we also prove asymptotic independence when 3m26. Such a less anticipated phenomenon is not exceptional and our results can be extended in two directions: one for more general shape parameters, and the other for other classes of random log-trees such as fringe-balanced binary search trees and quadtrees. The methods of proof combine asymptotic transfer for the underlying recurrence relations with the contraction method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">M-ary search tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Correlation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dependence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recurrence relations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limit law</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contraction method</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fuchs, Michael</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hwang, Hsien-Kuei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neininger, Ralph</subfield><subfield code="d">1970-</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)121754847</subfield><subfield code="0">(DE-627)585439435</subfield><subfield code="0">(DE-576)301177910</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Random structures & algorithms</subfield><subfield code="d">New York, NY [u.a.] : Wiley, 1990</subfield><subfield code="g">Volume 50(2017), Issue 3, pp. 353-379</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306711141</subfield><subfield code="w">(DE-600)1500812-5</subfield><subfield code="w">(DE-576)082436185</subfield><subfield code="x">1098-2418</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:353-379</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/rsa.20659</subfield><subfield code="x">Verlag</subfield><subfield code="x">Resolving-System</subfield><subfield code="y">Full text at Publisher</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-Frei3c</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="h">353-379</subfield><subfield code="y">Volume 50(2017), Issue 3, pp. 353-379</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">2088</subfield><subfield code="1">01</subfield><subfield code="x">DE-Frei3c</subfield><subfield code="b">4222651133</subfield><subfield code="c">00</subfield><subfield code="f">--%%--</subfield><subfield code="d">--%%--</subfield><subfield code="e">--%%--</subfield><subfield code="j">n</subfield><subfield code="k">Funding text: Partially supported by [...] Mathematisches Forschungsinstitut Oberwolfach (to H.-K.H.) [...]</subfield><subfield code="y">l01</subfield><subfield code="z">01-12-22</subfield></datafield></record></collection>
|
standort_str_mv |
--%%-- |
standort_iln_str_mv |
2088:--%%-- DE-Frei3c:--%%-- |
author |
Chern, Hua-Huai |
spellingShingle |
Chern, Hua-Huai misc M-ary search tree misc Correlation misc Dependence misc Recurrence relations misc Asymptotic analysis misc Limit law misc Asymptotic transfer misc Contraction method Dependence and phase changes in random m-ary search trees |
authorStr |
Chern, Hua-Huai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306711141 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
typewithnormlink_str_mv |
Person@(DE-588)121754847 DifferentiatedPerson@(DE-588)121754847 |
collection |
KXP SWB GVK |
remote_str |
true |
last_changed_iln_str_mv |
2088@01-12-22 |
illustrated |
Not Illustrated |
issn |
1098-2418 |
topic_title |
Dependence and phase changes in random m-ary search trees M-ary search tree Correlation Dependence Recurrence relations Asymptotic analysis Limit law Asymptotic transfer Contraction method |
topic |
misc M-ary search tree misc Correlation misc Dependence misc Recurrence relations misc Asymptotic analysis misc Limit law misc Asymptotic transfer misc Contraction method |
topic_unstemmed |
misc M-ary search tree misc Correlation misc Dependence misc Recurrence relations misc Asymptotic analysis misc Limit law misc Asymptotic transfer misc Contraction method |
topic_browse |
misc M-ary search tree misc Correlation misc Dependence misc Recurrence relations misc Asymptotic analysis misc Limit law misc Asymptotic transfer misc Contraction method |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
standort_txtP_mv |
--%%-- |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Random structures & algorithms |
normlinkwithtype_str_mv |
(DE-588)121754847@Person (DE-588)121754847@DifferentiatedPerson |
hierarchy_parent_id |
306711141 |
signature |
--%%-- |
signature_str_mv |
--%%-- |
hierarchy_top_title |
Random structures & algorithms |
edition |
Version of Record online: 30 August 2016 |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306711141 (DE-600)1500812-5 (DE-576)082436185 |
normlinkwithrole_str_mv |
(DE-588)121754847@@aut@@ |
title |
Dependence and phase changes in random m-ary search trees |
ctrlnum |
(DE-627)1824156324 (DE-599)KXP1824156324 |
exemplarkommentar_str_mv |
2088@Funding text: Partially supported by [...] Mathematisches Forschungsinstitut Oberwolfach (to H.-K.H.) [...] |
title_full |
Dependence and phase changes in random m-ary search trees |
author_sort |
Chern, Hua-Huai |
journal |
Random structures & algorithms |
journalStr |
Random structures & algorithms |
callnumber-first-code |
- |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
353 |
author_browse |
Chern, Hua-Huai Fuchs, Michael Hwang, Hsien-Kuei Neininger, Ralph |
selectkey |
2088:l |
container_volume |
50 |
format_se |
Elektronische Aufsätze |
author-letter |
Chern, Hua-Huai |
doi_str_mv |
10.1002/rsa.20659 |
normlink |
121754847 585439435 301177910 |
normlink_prefix_str_mv |
(DE-588)121754847 (DE-627)585439435 (DE-576)301177910 |
author2-role |
verfasserin |
title_sort |
dependence and phase changes in random m-ary search trees |
title_auth |
Dependence and phase changes in random m-ary search trees |
abstract |
We study the joint asymptotic behavior of the space requirement and the total path length (either summing over all root-key distances or over all root-node distances) in random m-ary search trees. The covariance turns out to exhibit a change of asymptotic behavior: it is essentially linear when 3m13, but becomes of higher order when m14. Surprisingly, the corresponding asymptotic correlation coefficient tends to zero when 3m26, but is periodically oscillating for larger m, and we also prove asymptotic independence when 3m26. Such a less anticipated phenomenon is not exceptional and our results can be extended in two directions: one for more general shape parameters, and the other for other classes of random log-trees such as fringe-balanced binary search trees and quadtrees. The methods of proof combine asymptotic transfer for the underlying recurrence relations with the contraction method. Last seen: 01.12.2022 |
abstractGer |
We study the joint asymptotic behavior of the space requirement and the total path length (either summing over all root-key distances or over all root-node distances) in random m-ary search trees. The covariance turns out to exhibit a change of asymptotic behavior: it is essentially linear when 3m13, but becomes of higher order when m14. Surprisingly, the corresponding asymptotic correlation coefficient tends to zero when 3m26, but is periodically oscillating for larger m, and we also prove asymptotic independence when 3m26. Such a less anticipated phenomenon is not exceptional and our results can be extended in two directions: one for more general shape parameters, and the other for other classes of random log-trees such as fringe-balanced binary search trees and quadtrees. The methods of proof combine asymptotic transfer for the underlying recurrence relations with the contraction method. Last seen: 01.12.2022 |
abstract_unstemmed |
We study the joint asymptotic behavior of the space requirement and the total path length (either summing over all root-key distances or over all root-node distances) in random m-ary search trees. The covariance turns out to exhibit a change of asymptotic behavior: it is essentially linear when 3m13, but becomes of higher order when m14. Surprisingly, the corresponding asymptotic correlation coefficient tends to zero when 3m26, but is periodically oscillating for larger m, and we also prove asymptotic independence when 3m26. Such a less anticipated phenomenon is not exceptional and our results can be extended in two directions: one for more general shape parameters, and the other for other classes of random log-trees such as fringe-balanced binary search trees and quadtrees. The methods of proof combine asymptotic transfer for the underlying recurrence relations with the contraction method. Last seen: 01.12.2022 |
collection_details |
GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Dependence and phase changes in random m-ary search trees |
url |
https://doi.org/10.1002/rsa.20659 |
ausleihindikator_str_mv |
2088:- |
rolewithnormlink_str_mv |
@@aut@@(DE-588)121754847 |
remote_bool |
true |
author2 |
Fuchs, Michael Hwang, Hsien-Kuei Neininger, Ralph 1970- |
author2Str |
Fuchs, Michael Hwang, Hsien-Kuei Neininger, Ralph 1970- |
ppnlink |
306711141 |
GND_str_mv |
Neininger, R. Neininger, Ralph |
GND_txt_mv |
Neininger, R. Neininger, Ralph |
GND_txtF_mv |
Neininger, R. Neininger, Ralph |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1002/rsa.20659 |
callnumber-a |
--%%-- |
up_date |
2024-07-04T17:34:47.683Z |
_version_ |
1803670769039835136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a2200265 4500</leader><controlfield tag="001">1824156324</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20221201133009.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221201s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/rsa.20659</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1824156324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1824156324</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chern, Hua-Huai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dependence and phase changes in random m-ary search trees</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Version of Record online: 30 August 2016</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Last seen: 01.12.2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study the joint asymptotic behavior of the space requirement and the total path length (either summing over all root-key distances or over all root-node distances) in random m-ary search trees. The covariance turns out to exhibit a change of asymptotic behavior: it is essentially linear when 3m13, but becomes of higher order when m14. Surprisingly, the corresponding asymptotic correlation coefficient tends to zero when 3m26, but is periodically oscillating for larger m, and we also prove asymptotic independence when 3m26. Such a less anticipated phenomenon is not exceptional and our results can be extended in two directions: one for more general shape parameters, and the other for other classes of random log-trees such as fringe-balanced binary search trees and quadtrees. The methods of proof combine asymptotic transfer for the underlying recurrence relations with the contraction method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">M-ary search tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Correlation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dependence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recurrence relations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limit law</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contraction method</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fuchs, Michael</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hwang, Hsien-Kuei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neininger, Ralph</subfield><subfield code="d">1970-</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)121754847</subfield><subfield code="0">(DE-627)585439435</subfield><subfield code="0">(DE-576)301177910</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Random structures & algorithms</subfield><subfield code="d">New York, NY [u.a.] : Wiley, 1990</subfield><subfield code="g">Volume 50(2017), Issue 3, pp. 353-379</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306711141</subfield><subfield code="w">(DE-600)1500812-5</subfield><subfield code="w">(DE-576)082436185</subfield><subfield code="x">1098-2418</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:353-379</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/rsa.20659</subfield><subfield code="x">Verlag</subfield><subfield code="x">Resolving-System</subfield><subfield code="y">Full text at Publisher</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-Frei3c</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="h">353-379</subfield><subfield code="y">Volume 50(2017), Issue 3, pp. 353-379</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">2088</subfield><subfield code="1">01</subfield><subfield code="x">DE-Frei3c</subfield><subfield code="b">4222651133</subfield><subfield code="c">00</subfield><subfield code="f">--%%--</subfield><subfield code="d">--%%--</subfield><subfield code="e">--%%--</subfield><subfield code="j">n</subfield><subfield code="k">Funding text: Partially supported by [...] Mathematisches Forschungsinstitut Oberwolfach (to H.-K.H.) [...]</subfield><subfield code="y">l01</subfield><subfield code="z">01-12-22</subfield></datafield></record></collection>
|
score |
7.4022093 |