Some results related to Schiffer's problem
We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain Omega with analytic boundary partial differential partial derivative Omega having at least one bounded connected component {-Delta u = g(u) in Omega, partial derivative u/partial derivative v...
Ausführliche Beschreibung
Autor*in: |
Kawohl, Bernhard - 1952- [verfasserIn] Lucia, Marcello [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|---|
Ausgabe: |
Published: 26 January 2021 |
Schlagwörter: |
---|
Anmerkung: |
Last seen: 09.02.2023 |
---|
Weitere Ausgabe: |
Erscheint auch als Preprint: Some results related to Schiffer's problem - Oberwolfach-Walke : Mathematisches Forschungsinstitut, 2018 |
---|---|
Übergeordnetes Werk: |
Enthalten in: Journal d'analyse mathématique - Berlin : Springer, 1951, Volume 142(2020), Issue 2, pp. 667-696 |
Übergeordnetes Werk: |
volume:142 ; year:2020 ; number:2 ; pages:667-696 |
Links: |
---|
DOI / URN: |
10.1007/s11854-020-0146-z |
---|
Katalog-ID: |
1833787552 |
---|
LEADER | 01000naa a2200265 4500 | ||
---|---|---|---|
001 | 1833787552 | ||
003 | DE-627 | ||
005 | 20230209093853.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230209s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11854-020-0146-z |2 doi | |
035 | |a (DE-627)1833787552 | ||
035 | |a (DE-599)KXP1833787552 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a 35J25 |2 msc | ||
084 | |a 35N25 |2 msc | ||
084 | |a 35J61 |2 msc | ||
084 | |a 35P99 |2 msc | ||
100 | 1 | |a Kawohl, Bernhard |d 1952- |e verfasserin |0 (DE-588)142802883 |0 (DE-627)640131042 |0 (DE-576)161668852 |4 aut | |
245 | 1 | 0 | |a Some results related to Schiffer's problem |
250 | |a Published: 26 January 2021 | ||
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Last seen: 09.02.2023 | ||
520 | |a We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain Omega with analytic boundary partial differential partial derivative Omega having at least one bounded connected component {-Delta u = g(u) in Omega, partial derivative u/partial derivative v = 0 and u = c on partial derivative Omega where c is a constant. When g(c) = 0 the constant solution u equivalent to c is the unique solution. For g(c) not equal 0, we show that the boundary is a circle if and only if the problem admits a solution that has a constant third or fourth normal derivative along the boundary. A similar result involving the fifth normal derivative is proved. | ||
650 | 4 | |a Boundary-value-problems | |
650 | 4 | |a Overdetermined problems | |
650 | 4 | |a Pompeiu problem | |
650 | 4 | |a Radial symmetry | |
700 | 1 | |a Lucia, Marcello |e verfasserin |0 (DE-588)1165083825 |0 (DE-627)1029272301 |0 (DE-576)510238769 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal d'analyse mathématique |d Berlin : Springer, 1951 |g Volume 142(2020), Issue 2, pp. 667-696 |h Online-Ressource |w (DE-627)53027728X |w (DE-600)2316542-X |w (DE-576)264951751 |x 1565-8538 |7 nnns |
773 | 1 | 8 | |g volume:142 |g year:2020 |g number:2 |g pages:667-696 |
776 | 0 | 8 | |i Erscheint auch als |n Preprint |t Some results related to Schiffer's problem |d Oberwolfach-Walke : Mathematisches Forschungsinstitut, 2018 |h 1 Online-Ressource (34 Seiten) |w (DE-627)1655292412 |w (DE-576)510238882 |
856 | 4 | 0 | |u https://doi.org/10.1007/s11854-020-0146-z |x Resolving-System |y Full Text at Publisher |z lizenzpflichtig |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ILN_2088 | ||
912 | |a ISIL_DE-Frei3c | ||
912 | |a SYSFLAG_1 | ||
912 | |a GBV_KXP | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 142 |j 2020 |e 2 |h 667-696 |y Volume 142(2020), Issue 2, pp. 667-696 | ||
980 | |2 2088 |1 01 |x DE-Frei3c |b 4269364009 |c 00 |f --%%-- |d --%%-- |e --%%-- |j n |k Funding text/Acknowledgements: This research was begun during a "Research in Pairs" stay from May 23 to June 14, 2013 at Mathematisches Forschungsinstitut Oberwolfach. We are grateful to MFO and their staff for the excellent working conditions and hospitality. [...] |y l01 |z 09-02-23 | ||
981 | |2 2088 |1 01 |x DE-Frei3c |y Oberwolfach Preprint |r https://doi.org/10.14760/OWP-2018-18 | ||
983 | |2 2088 |1 01 |x DE-Frei3c |8 00 |0 (DE-627)1295034905 |a AMS:35 |b Partial differential equations |
author_variant |
b k bk m l ml |
---|---|
matchkey_str |
article:15658538:2020----::oeeutrltdocif |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s11854-020-0146-z doi (DE-627)1833787552 (DE-599)KXP1833787552 DE-627 ger DE-627 rda eng 35J25 msc 35N25 msc 35J61 msc 35P99 msc Kawohl, Bernhard 1952- verfasserin (DE-588)142802883 (DE-627)640131042 (DE-576)161668852 aut Some results related to Schiffer's problem Published: 26 January 2021 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 09.02.2023 We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain Omega with analytic boundary partial differential partial derivative Omega having at least one bounded connected component {-Delta u = g(u) in Omega, partial derivative u/partial derivative v = 0 and u = c on partial derivative Omega where c is a constant. When g(c) = 0 the constant solution u equivalent to c is the unique solution. For g(c) not equal 0, we show that the boundary is a circle if and only if the problem admits a solution that has a constant third or fourth normal derivative along the boundary. A similar result involving the fifth normal derivative is proved. Boundary-value-problems Overdetermined problems Pompeiu problem Radial symmetry Lucia, Marcello verfasserin (DE-588)1165083825 (DE-627)1029272301 (DE-576)510238769 aut Enthalten in Journal d'analyse mathématique Berlin : Springer, 1951 Volume 142(2020), Issue 2, pp. 667-696 Online-Ressource (DE-627)53027728X (DE-600)2316542-X (DE-576)264951751 1565-8538 nnns volume:142 year:2020 number:2 pages:667-696 Erscheint auch als Preprint Some results related to Schiffer's problem Oberwolfach-Walke : Mathematisches Forschungsinstitut, 2018 1 Online-Ressource (34 Seiten) (DE-627)1655292412 (DE-576)510238882 https://doi.org/10.1007/s11854-020-0146-z Resolving-System Full Text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 142 2020 2 667-696 Volume 142(2020), Issue 2, pp. 667-696 2088 01 DE-Frei3c 4269364009 00 --%%-- --%%-- --%%-- n Funding text/Acknowledgements: This research was begun during a "Research in Pairs" stay from May 23 to June 14, 2013 at Mathematisches Forschungsinstitut Oberwolfach. We are grateful to MFO and their staff for the excellent working conditions and hospitality. [...] l01 09-02-23 2088 01 DE-Frei3c Oberwolfach Preprint https://doi.org/10.14760/OWP-2018-18 2088 01 DE-Frei3c 00 (DE-627)1295034905 AMS:35 Partial differential equations |
spelling |
10.1007/s11854-020-0146-z doi (DE-627)1833787552 (DE-599)KXP1833787552 DE-627 ger DE-627 rda eng 35J25 msc 35N25 msc 35J61 msc 35P99 msc Kawohl, Bernhard 1952- verfasserin (DE-588)142802883 (DE-627)640131042 (DE-576)161668852 aut Some results related to Schiffer's problem Published: 26 January 2021 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 09.02.2023 We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain Omega with analytic boundary partial differential partial derivative Omega having at least one bounded connected component {-Delta u = g(u) in Omega, partial derivative u/partial derivative v = 0 and u = c on partial derivative Omega where c is a constant. When g(c) = 0 the constant solution u equivalent to c is the unique solution. For g(c) not equal 0, we show that the boundary is a circle if and only if the problem admits a solution that has a constant third or fourth normal derivative along the boundary. A similar result involving the fifth normal derivative is proved. Boundary-value-problems Overdetermined problems Pompeiu problem Radial symmetry Lucia, Marcello verfasserin (DE-588)1165083825 (DE-627)1029272301 (DE-576)510238769 aut Enthalten in Journal d'analyse mathématique Berlin : Springer, 1951 Volume 142(2020), Issue 2, pp. 667-696 Online-Ressource (DE-627)53027728X (DE-600)2316542-X (DE-576)264951751 1565-8538 nnns volume:142 year:2020 number:2 pages:667-696 Erscheint auch als Preprint Some results related to Schiffer's problem Oberwolfach-Walke : Mathematisches Forschungsinstitut, 2018 1 Online-Ressource (34 Seiten) (DE-627)1655292412 (DE-576)510238882 https://doi.org/10.1007/s11854-020-0146-z Resolving-System Full Text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 142 2020 2 667-696 Volume 142(2020), Issue 2, pp. 667-696 2088 01 DE-Frei3c 4269364009 00 --%%-- --%%-- --%%-- n Funding text/Acknowledgements: This research was begun during a "Research in Pairs" stay from May 23 to June 14, 2013 at Mathematisches Forschungsinstitut Oberwolfach. We are grateful to MFO and their staff for the excellent working conditions and hospitality. [...] l01 09-02-23 2088 01 DE-Frei3c Oberwolfach Preprint https://doi.org/10.14760/OWP-2018-18 2088 01 DE-Frei3c 00 (DE-627)1295034905 AMS:35 Partial differential equations |
allfields_unstemmed |
10.1007/s11854-020-0146-z doi (DE-627)1833787552 (DE-599)KXP1833787552 DE-627 ger DE-627 rda eng 35J25 msc 35N25 msc 35J61 msc 35P99 msc Kawohl, Bernhard 1952- verfasserin (DE-588)142802883 (DE-627)640131042 (DE-576)161668852 aut Some results related to Schiffer's problem Published: 26 January 2021 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 09.02.2023 We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain Omega with analytic boundary partial differential partial derivative Omega having at least one bounded connected component {-Delta u = g(u) in Omega, partial derivative u/partial derivative v = 0 and u = c on partial derivative Omega where c is a constant. When g(c) = 0 the constant solution u equivalent to c is the unique solution. For g(c) not equal 0, we show that the boundary is a circle if and only if the problem admits a solution that has a constant third or fourth normal derivative along the boundary. A similar result involving the fifth normal derivative is proved. Boundary-value-problems Overdetermined problems Pompeiu problem Radial symmetry Lucia, Marcello verfasserin (DE-588)1165083825 (DE-627)1029272301 (DE-576)510238769 aut Enthalten in Journal d'analyse mathématique Berlin : Springer, 1951 Volume 142(2020), Issue 2, pp. 667-696 Online-Ressource (DE-627)53027728X (DE-600)2316542-X (DE-576)264951751 1565-8538 nnns volume:142 year:2020 number:2 pages:667-696 Erscheint auch als Preprint Some results related to Schiffer's problem Oberwolfach-Walke : Mathematisches Forschungsinstitut, 2018 1 Online-Ressource (34 Seiten) (DE-627)1655292412 (DE-576)510238882 https://doi.org/10.1007/s11854-020-0146-z Resolving-System Full Text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 142 2020 2 667-696 Volume 142(2020), Issue 2, pp. 667-696 2088 01 DE-Frei3c 4269364009 00 --%%-- --%%-- --%%-- n Funding text/Acknowledgements: This research was begun during a "Research in Pairs" stay from May 23 to June 14, 2013 at Mathematisches Forschungsinstitut Oberwolfach. We are grateful to MFO and their staff for the excellent working conditions and hospitality. [...] l01 09-02-23 2088 01 DE-Frei3c Oberwolfach Preprint https://doi.org/10.14760/OWP-2018-18 2088 01 DE-Frei3c 00 (DE-627)1295034905 AMS:35 Partial differential equations |
allfieldsGer |
10.1007/s11854-020-0146-z doi (DE-627)1833787552 (DE-599)KXP1833787552 DE-627 ger DE-627 rda eng 35J25 msc 35N25 msc 35J61 msc 35P99 msc Kawohl, Bernhard 1952- verfasserin (DE-588)142802883 (DE-627)640131042 (DE-576)161668852 aut Some results related to Schiffer's problem Published: 26 January 2021 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 09.02.2023 We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain Omega with analytic boundary partial differential partial derivative Omega having at least one bounded connected component {-Delta u = g(u) in Omega, partial derivative u/partial derivative v = 0 and u = c on partial derivative Omega where c is a constant. When g(c) = 0 the constant solution u equivalent to c is the unique solution. For g(c) not equal 0, we show that the boundary is a circle if and only if the problem admits a solution that has a constant third or fourth normal derivative along the boundary. A similar result involving the fifth normal derivative is proved. Boundary-value-problems Overdetermined problems Pompeiu problem Radial symmetry Lucia, Marcello verfasserin (DE-588)1165083825 (DE-627)1029272301 (DE-576)510238769 aut Enthalten in Journal d'analyse mathématique Berlin : Springer, 1951 Volume 142(2020), Issue 2, pp. 667-696 Online-Ressource (DE-627)53027728X (DE-600)2316542-X (DE-576)264951751 1565-8538 nnns volume:142 year:2020 number:2 pages:667-696 Erscheint auch als Preprint Some results related to Schiffer's problem Oberwolfach-Walke : Mathematisches Forschungsinstitut, 2018 1 Online-Ressource (34 Seiten) (DE-627)1655292412 (DE-576)510238882 https://doi.org/10.1007/s11854-020-0146-z Resolving-System Full Text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 142 2020 2 667-696 Volume 142(2020), Issue 2, pp. 667-696 2088 01 DE-Frei3c 4269364009 00 --%%-- --%%-- --%%-- n Funding text/Acknowledgements: This research was begun during a "Research in Pairs" stay from May 23 to June 14, 2013 at Mathematisches Forschungsinstitut Oberwolfach. We are grateful to MFO and their staff for the excellent working conditions and hospitality. [...] l01 09-02-23 2088 01 DE-Frei3c Oberwolfach Preprint https://doi.org/10.14760/OWP-2018-18 2088 01 DE-Frei3c 00 (DE-627)1295034905 AMS:35 Partial differential equations |
allfieldsSound |
10.1007/s11854-020-0146-z doi (DE-627)1833787552 (DE-599)KXP1833787552 DE-627 ger DE-627 rda eng 35J25 msc 35N25 msc 35J61 msc 35P99 msc Kawohl, Bernhard 1952- verfasserin (DE-588)142802883 (DE-627)640131042 (DE-576)161668852 aut Some results related to Schiffer's problem Published: 26 January 2021 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 09.02.2023 We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain Omega with analytic boundary partial differential partial derivative Omega having at least one bounded connected component {-Delta u = g(u) in Omega, partial derivative u/partial derivative v = 0 and u = c on partial derivative Omega where c is a constant. When g(c) = 0 the constant solution u equivalent to c is the unique solution. For g(c) not equal 0, we show that the boundary is a circle if and only if the problem admits a solution that has a constant third or fourth normal derivative along the boundary. A similar result involving the fifth normal derivative is proved. Boundary-value-problems Overdetermined problems Pompeiu problem Radial symmetry Lucia, Marcello verfasserin (DE-588)1165083825 (DE-627)1029272301 (DE-576)510238769 aut Enthalten in Journal d'analyse mathématique Berlin : Springer, 1951 Volume 142(2020), Issue 2, pp. 667-696 Online-Ressource (DE-627)53027728X (DE-600)2316542-X (DE-576)264951751 1565-8538 nnns volume:142 year:2020 number:2 pages:667-696 Erscheint auch als Preprint Some results related to Schiffer's problem Oberwolfach-Walke : Mathematisches Forschungsinstitut, 2018 1 Online-Ressource (34 Seiten) (DE-627)1655292412 (DE-576)510238882 https://doi.org/10.1007/s11854-020-0146-z Resolving-System Full Text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 142 2020 2 667-696 Volume 142(2020), Issue 2, pp. 667-696 2088 01 DE-Frei3c 4269364009 00 --%%-- --%%-- --%%-- n Funding text/Acknowledgements: This research was begun during a "Research in Pairs" stay from May 23 to June 14, 2013 at Mathematisches Forschungsinstitut Oberwolfach. We are grateful to MFO and their staff for the excellent working conditions and hospitality. [...] l01 09-02-23 2088 01 DE-Frei3c Oberwolfach Preprint https://doi.org/10.14760/OWP-2018-18 2088 01 DE-Frei3c 00 (DE-627)1295034905 AMS:35 Partial differential equations |
language |
English |
source |
Enthalten in Journal d'analyse mathématique Volume 142(2020), Issue 2, pp. 667-696 volume:142 year:2020 number:2 pages:667-696 |
sourceStr |
Enthalten in Journal d'analyse mathématique Volume 142(2020), Issue 2, pp. 667-696 volume:142 year:2020 number:2 pages:667-696 |
format_phy_str_mv |
Article |
building |
2088:0 |
institution |
findex.gbv.de |
selectbib_iln_str_mv |
2088@01 |
topic_facet |
Boundary-value-problems Overdetermined problems Pompeiu problem Radial symmetry |
isfreeaccess_bool |
false |
container_title |
Journal d'analyse mathématique |
authorswithroles_txt_mv |
Kawohl, Bernhard @@aut@@ Lucia, Marcello @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
53027728X |
id |
1833787552 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a2200265 4500</leader><controlfield tag="001">1833787552</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230209093853.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230209s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11854-020-0146-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1833787552</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1833787552</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35J25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35N25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35J61</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35P99</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kawohl, Bernhard</subfield><subfield code="d">1952-</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)142802883</subfield><subfield code="0">(DE-627)640131042</subfield><subfield code="0">(DE-576)161668852</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some results related to Schiffer's problem</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Published: 26 January 2021</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Last seen: 09.02.2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain Omega with analytic boundary partial differential partial derivative Omega having at least one bounded connected component {-Delta u = g(u) in Omega, partial derivative u/partial derivative v = 0 and u = c on partial derivative Omega where c is a constant. When g(c) = 0 the constant solution u equivalent to c is the unique solution. For g(c) not equal 0, we show that the boundary is a circle if and only if the problem admits a solution that has a constant third or fourth normal derivative along the boundary. A similar result involving the fifth normal derivative is proved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary-value-problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Overdetermined problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pompeiu problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radial symmetry</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lucia, Marcello</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1165083825</subfield><subfield code="0">(DE-627)1029272301</subfield><subfield code="0">(DE-576)510238769</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal d'analyse mathématique</subfield><subfield code="d">Berlin : Springer, 1951</subfield><subfield code="g">Volume 142(2020), Issue 2, pp. 667-696</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)53027728X</subfield><subfield code="w">(DE-600)2316542-X</subfield><subfield code="w">(DE-576)264951751</subfield><subfield code="x">1565-8538</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:142</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:667-696</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Preprint</subfield><subfield code="t">Some results related to Schiffer's problem</subfield><subfield code="d">Oberwolfach-Walke : Mathematisches Forschungsinstitut, 2018</subfield><subfield code="h">1 Online-Ressource (34 Seiten)</subfield><subfield code="w">(DE-627)1655292412</subfield><subfield code="w">(DE-576)510238882</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s11854-020-0146-z</subfield><subfield code="x">Resolving-System</subfield><subfield code="y">Full Text at Publisher</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-Frei3c</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">142</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="h">667-696</subfield><subfield code="y">Volume 142(2020), Issue 2, pp. 667-696</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">2088</subfield><subfield code="1">01</subfield><subfield code="x">DE-Frei3c</subfield><subfield code="b">4269364009</subfield><subfield code="c">00</subfield><subfield code="f">--%%--</subfield><subfield code="d">--%%--</subfield><subfield code="e">--%%--</subfield><subfield code="j">n</subfield><subfield code="k">Funding text/Acknowledgements: This research was begun during a "Research in Pairs" stay from May 23 to June 14, 2013 at Mathematisches Forschungsinstitut Oberwolfach. We are grateful to MFO and their staff for the excellent working conditions and hospitality. [...]</subfield><subfield code="y">l01</subfield><subfield code="z">09-02-23</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">2088</subfield><subfield code="1">01</subfield><subfield code="x">DE-Frei3c</subfield><subfield code="y">Oberwolfach Preprint</subfield><subfield code="r">https://doi.org/10.14760/OWP-2018-18</subfield></datafield><datafield tag="983" ind1=" " ind2=" "><subfield code="2">2088</subfield><subfield code="1">01</subfield><subfield code="x">DE-Frei3c</subfield><subfield code="8">00</subfield><subfield code="0">(DE-627)1295034905</subfield><subfield code="a">AMS:35</subfield><subfield code="b">Partial differential equations</subfield></datafield></record></collection>
|
standort_str_mv |
--%%-- |
standort_iln_str_mv |
2088:--%%-- DE-Frei3c:--%%-- |
author |
Kawohl, Bernhard 1952- |
spellingShingle |
Kawohl, Bernhard 1952- msc 35J25 msc 35N25 msc 35J61 msc 35P99 misc Boundary-value-problems misc Overdetermined problems misc Pompeiu problem misc Radial symmetry Some results related to Schiffer's problem |
authorStr |
Kawohl, Bernhard 1952- |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)53027728X @@776@@(DE-627)1655292412 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
typewithnormlink_str_mv |
DifferentiatedPerson@(DE-588)142802883 Person@(DE-588)142802883 DifferentiatedPerson@(DE-588)1165083825 Person@(DE-588)1165083825 |
collection |
KXP SWB GVK |
remote_str |
true |
last_changed_iln_str_mv |
2088@09-02-23 |
illustrated |
Not Illustrated |
issn |
1565-8538 |
notation_local_iln_str_mv |
2088:AMS:35 DE-Frei3c:AMS:35 |
topic_title |
35J25 msc 35N25 msc 35J61 msc 35P99 msc Some results related to Schiffer's problem Boundary-value-problems Overdetermined problems Pompeiu problem Radial symmetry |
topic |
msc 35J25 msc 35N25 msc 35J61 msc 35P99 misc Boundary-value-problems misc Overdetermined problems misc Pompeiu problem misc Radial symmetry |
topic_unstemmed |
msc 35J25 msc 35N25 msc 35J61 msc 35P99 misc Boundary-value-problems misc Overdetermined problems misc Pompeiu problem misc Radial symmetry |
topic_browse |
msc 35J25 msc 35N25 msc 35J61 msc 35P99 misc Boundary-value-problems misc Overdetermined problems misc Pompeiu problem misc Radial symmetry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
standort_txtP_mv |
--%%-- |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal d'analyse mathématique |
normlinkwithtype_str_mv |
(DE-588)142802883@DifferentiatedPerson (DE-588)142802883@Person (DE-588)1165083825@DifferentiatedPerson (DE-588)1165083825@Person |
hierarchy_parent_id |
53027728X |
signature |
--%%-- |
signature_str_mv |
--%%-- |
hierarchy_top_title |
Journal d'analyse mathématique |
edition |
Published: 26 January 2021 |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)53027728X (DE-600)2316542-X (DE-576)264951751 |
normlinkwithrole_str_mv |
(DE-588)142802883@@aut@@ (DE-588)1165083825@@aut@@ |
title |
Some results related to Schiffer's problem |
ctrlnum |
(DE-627)1833787552 (DE-599)KXP1833787552 |
exemplarkommentar_str_mv |
2088@Funding text/Acknowledgements: This research was begun during a "Research in Pairs" stay from May 23 to June 14, 2013 at Mathematisches Forschungsinstitut Oberwolfach. We are grateful to MFO and their staff for the excellent working conditions and hospitality. [...] |
title_full |
Some results related to Schiffer's problem |
author_sort |
Kawohl, Bernhard 1952- |
journal |
Journal d'analyse mathématique |
journalStr |
Journal d'analyse mathématique |
callnumber-first-code |
- |
lang_code |
eng |
class_local |
2088 01 DE-Frei3c 00 (DE-627)1295034905 AMS:35 Partial differential equations |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
667 |
class_local_iln |
2088:Partial differential equations DE-Frei3c:Partial differential equations |
author_browse |
Kawohl, Bernhard Lucia, Marcello |
selectkey |
2088:l |
container_volume |
142 |
class |
35J25 msc 35N25 msc 35J61 msc 35P99 msc 2088 01 DE-Frei3c 00 (DE-627)1295034905 AMS:35 Partial differential equations |
format_se |
Elektronische Aufsätze |
author-letter |
Kawohl, Bernhard |
classname_local_iln_str_mv |
2088:Partial differential equations DE-Frei3c:Partial differential equations |
doi_str_mv |
10.1007/s11854-020-0146-z |
normlink |
142802883 640131042 161668852 1165083825 1029272301 510238769 1295034905 |
normlink_prefix_str_mv |
(DE-588)142802883 (DE-627)640131042 (DE-576)161668852 (DE-588)1165083825 (DE-627)1029272301 (DE-576)510238769 (DE-627)1295034905 |
author2-role |
verfasserin |
title_sort |
some results related to schiffer's problem |
title_auth |
Some results related to Schiffer's problem |
abstract |
We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain Omega with analytic boundary partial differential partial derivative Omega having at least one bounded connected component {-Delta u = g(u) in Omega, partial derivative u/partial derivative v = 0 and u = c on partial derivative Omega where c is a constant. When g(c) = 0 the constant solution u equivalent to c is the unique solution. For g(c) not equal 0, we show that the boundary is a circle if and only if the problem admits a solution that has a constant third or fourth normal derivative along the boundary. A similar result involving the fifth normal derivative is proved. Last seen: 09.02.2023 |
abstractGer |
We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain Omega with analytic boundary partial differential partial derivative Omega having at least one bounded connected component {-Delta u = g(u) in Omega, partial derivative u/partial derivative v = 0 and u = c on partial derivative Omega where c is a constant. When g(c) = 0 the constant solution u equivalent to c is the unique solution. For g(c) not equal 0, we show that the boundary is a circle if and only if the problem admits a solution that has a constant third or fourth normal derivative along the boundary. A similar result involving the fifth normal derivative is proved. Last seen: 09.02.2023 |
abstract_unstemmed |
We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain Omega with analytic boundary partial differential partial derivative Omega having at least one bounded connected component {-Delta u = g(u) in Omega, partial derivative u/partial derivative v = 0 and u = c on partial derivative Omega where c is a constant. When g(c) = 0 the constant solution u equivalent to c is the unique solution. For g(c) not equal 0, we show that the boundary is a circle if and only if the problem admits a solution that has a constant third or fourth normal derivative along the boundary. A similar result involving the fifth normal derivative is proved. Last seen: 09.02.2023 |
collection_details |
GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Some results related to Schiffer's problem |
url |
https://doi.org/10.1007/s11854-020-0146-z |
ausleihindikator_str_mv |
2088:- |
rolewithnormlink_str_mv |
@@aut@@(DE-588)142802883 @@aut@@(DE-588)1165083825 |
remote_bool |
true |
author2 |
Lucia, Marcello |
author2Str |
Lucia, Marcello |
ppnlink |
53027728X 1655292412 |
GND_str_mv |
Kawohl, B. Kawohl, Bernd Kawohl, Bernhard Lucia, Marcello |
GND_txt_mv |
Kawohl, B. Kawohl, Bernd Kawohl, Bernhard Lucia, Marcello |
GND_txtF_mv |
Kawohl, B. Kawohl, Bernd Kawohl, Bernhard Lucia, Marcello |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11854-020-0146-z |
callnumber-a |
--%%-- |
up_date |
2024-07-04T20:14:58.929Z |
_version_ |
1803680847162769408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a2200265 4500</leader><controlfield tag="001">1833787552</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230209093853.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230209s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11854-020-0146-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1833787552</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1833787552</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35J25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35N25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35J61</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35P99</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kawohl, Bernhard</subfield><subfield code="d">1952-</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)142802883</subfield><subfield code="0">(DE-627)640131042</subfield><subfield code="0">(DE-576)161668852</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some results related to Schiffer's problem</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Published: 26 January 2021</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Last seen: 09.02.2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain Omega with analytic boundary partial differential partial derivative Omega having at least one bounded connected component {-Delta u = g(u) in Omega, partial derivative u/partial derivative v = 0 and u = c on partial derivative Omega where c is a constant. When g(c) = 0 the constant solution u equivalent to c is the unique solution. For g(c) not equal 0, we show that the boundary is a circle if and only if the problem admits a solution that has a constant third or fourth normal derivative along the boundary. A similar result involving the fifth normal derivative is proved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary-value-problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Overdetermined problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pompeiu problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radial symmetry</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lucia, Marcello</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1165083825</subfield><subfield code="0">(DE-627)1029272301</subfield><subfield code="0">(DE-576)510238769</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal d'analyse mathématique</subfield><subfield code="d">Berlin : Springer, 1951</subfield><subfield code="g">Volume 142(2020), Issue 2, pp. 667-696</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)53027728X</subfield><subfield code="w">(DE-600)2316542-X</subfield><subfield code="w">(DE-576)264951751</subfield><subfield code="x">1565-8538</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:142</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:667-696</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Preprint</subfield><subfield code="t">Some results related to Schiffer's problem</subfield><subfield code="d">Oberwolfach-Walke : Mathematisches Forschungsinstitut, 2018</subfield><subfield code="h">1 Online-Ressource (34 Seiten)</subfield><subfield code="w">(DE-627)1655292412</subfield><subfield code="w">(DE-576)510238882</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s11854-020-0146-z</subfield><subfield code="x">Resolving-System</subfield><subfield code="y">Full Text at Publisher</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-Frei3c</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">142</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="h">667-696</subfield><subfield code="y">Volume 142(2020), Issue 2, pp. 667-696</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">2088</subfield><subfield code="1">01</subfield><subfield code="x">DE-Frei3c</subfield><subfield code="b">4269364009</subfield><subfield code="c">00</subfield><subfield code="f">--%%--</subfield><subfield code="d">--%%--</subfield><subfield code="e">--%%--</subfield><subfield code="j">n</subfield><subfield code="k">Funding text/Acknowledgements: This research was begun during a "Research in Pairs" stay from May 23 to June 14, 2013 at Mathematisches Forschungsinstitut Oberwolfach. We are grateful to MFO and their staff for the excellent working conditions and hospitality. [...]</subfield><subfield code="y">l01</subfield><subfield code="z">09-02-23</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">2088</subfield><subfield code="1">01</subfield><subfield code="x">DE-Frei3c</subfield><subfield code="y">Oberwolfach Preprint</subfield><subfield code="r">https://doi.org/10.14760/OWP-2018-18</subfield></datafield><datafield tag="983" ind1=" " ind2=" "><subfield code="2">2088</subfield><subfield code="1">01</subfield><subfield code="x">DE-Frei3c</subfield><subfield code="8">00</subfield><subfield code="0">(DE-627)1295034905</subfield><subfield code="a">AMS:35</subfield><subfield code="b">Partial differential equations</subfield></datafield></record></collection>
|
score |
7.402915 |