Liftable derived equivalences and objective categories
We give two proofs of the following theorem and a partial generalization: if a finite-dimensional algebraAis derived equivalent to a smooth projective scheme, then any derived equivalence betweenAand another algebraBis standard, that is, isomorphic to the derived tensor functor by a two-sided tiltin...
Ausführliche Beschreibung
Autor*in: |
Chen, Xiaofa [verfasserIn] Chen, Xiao-Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|---|
Ausgabe: |
Version of Record online: 22 June 2020 |
Anmerkung: |
Last seen: 10.03.2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Bulletin of the London Mathematical Society - London Mathematical Society, Hoboken, NJ : Wiley, 1969, Volume 52(2020), Issue 5, pp. 816-834 |
---|---|
Übergeordnetes Werk: |
volume:52 ; year:2020 ; number:5 ; pages:816-834 |
Links: |
---|
DOI / URN: |
10.1112/blms.12364 |
---|
Katalog-ID: |
1838874542 |
---|
LEADER | 01000naa a2200265 4500 | ||
---|---|---|---|
001 | 1838874542 | ||
003 | DE-627 | ||
005 | 20230310113543.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1112/blms.12364 |2 doi | |
035 | |a (DE-627)1838874542 | ||
035 | |a (DE-599)KXP1838874542 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a 16D90 |a 16G10 |a 18F30 |2 msc | ||
100 | 1 | |a Chen, Xiaofa |e verfasserin |4 aut | |
245 | 1 | 0 | |a Liftable derived equivalences and objective categories |
250 | |a Version of Record online: 22 June 2020 | ||
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Last seen: 10.03.2023 | ||
520 | |a We give two proofs of the following theorem and a partial generalization: if a finite-dimensional algebraAis derived equivalent to a smooth projective scheme, then any derived equivalence betweenAand another algebraBis standard, that is, isomorphic to the derived tensor functor by a two-sided tilting complex. The main ingredients of the proofs are as follows: (1) between the derived categories of two module categories, liftable functors coincide with standard functors; (2) any derived equivalence between a module category and an abelian category is uniquely factorized as the composition of a pseudo-identity and a liftable derived equivalence; (3) the derived category of coherent sheaves on a certain class of projective schemes is triangle-objective, that is, any triangle autoequivalence on it, which preserves the isomorphism classes of all objects, is necessarily isomorphic to the identity functor. | ||
700 | 1 | |a Chen, Xiao-Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |a London Mathematical Society |t Bulletin of the London Mathematical Society |d Hoboken, NJ : Wiley, 1969 |g Volume 52(2020), Issue 5, pp. 816-834 |h Online-Ressource |w (DE-627)270132023 |w (DE-600)1476985-2 |w (DE-576)078129966 |x 1469-2120 |7 nnns |
773 | 1 | 8 | |g volume:52 |g year:2020 |g number:5 |g pages:816-834 |
856 | 4 | 0 | |u https://doi.org/10.1112/blms.12364 |x Resolving-System |y Full Text at Publisher |z lizenzpflichtig |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ILN_2088 | ||
912 | |a ISIL_DE-Frei3c | ||
912 | |a SYSFLAG_1 | ||
912 | |a GBV_KXP | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 52 |j 2020 |e 5 |h 816-834 |y Volume 52(2020), Issue 5, pp. 816-834 | ||
980 | |2 2088 |1 01 |x DE-Frei3c |b 4287040783 |c 00 |f --%%-- |d --%%-- |e --%%-- |j n |k Funding text/Acknowledgements: [...] The paper was revised when the second author visited University of Bielefeld, with a research stay partially supported by the Simons Foundation and by the Mathematisches Forschungsinstitut Oberwolfach. |y l01 |z 10-03-23 | ||
983 | |2 2088 |1 01 |x DE-Frei3c |8 00 |0 (DE-627)1294704400 |a AMS:16 |b Associative rings and algebras | ||
983 | |2 2088 |1 01 |x DE-Frei3c |8 00 |0 (DE-627)1294704397 |a AMS:18 |b Category theory; homological algebra |
author_variant |
x c xc x w c xwc |
---|---|
matchkey_str |
article:14692120:2020----::itbeeieeuvlneadbet |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1112/blms.12364 doi (DE-627)1838874542 (DE-599)KXP1838874542 DE-627 ger DE-627 rda eng 16D90 16G10 18F30 msc Chen, Xiaofa verfasserin aut Liftable derived equivalences and objective categories Version of Record online: 22 June 2020 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 10.03.2023 We give two proofs of the following theorem and a partial generalization: if a finite-dimensional algebraAis derived equivalent to a smooth projective scheme, then any derived equivalence betweenAand another algebraBis standard, that is, isomorphic to the derived tensor functor by a two-sided tilting complex. The main ingredients of the proofs are as follows: (1) between the derived categories of two module categories, liftable functors coincide with standard functors; (2) any derived equivalence between a module category and an abelian category is uniquely factorized as the composition of a pseudo-identity and a liftable derived equivalence; (3) the derived category of coherent sheaves on a certain class of projective schemes is triangle-objective, that is, any triangle autoequivalence on it, which preserves the isomorphism classes of all objects, is necessarily isomorphic to the identity functor. Chen, Xiao-Wu verfasserin aut Enthalten in London Mathematical Society Bulletin of the London Mathematical Society Hoboken, NJ : Wiley, 1969 Volume 52(2020), Issue 5, pp. 816-834 Online-Ressource (DE-627)270132023 (DE-600)1476985-2 (DE-576)078129966 1469-2120 nnns volume:52 year:2020 number:5 pages:816-834 https://doi.org/10.1112/blms.12364 Resolving-System Full Text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 52 2020 5 816-834 Volume 52(2020), Issue 5, pp. 816-834 2088 01 DE-Frei3c 4287040783 00 --%%-- --%%-- --%%-- n Funding text/Acknowledgements: [...] The paper was revised when the second author visited University of Bielefeld, with a research stay partially supported by the Simons Foundation and by the Mathematisches Forschungsinstitut Oberwolfach. l01 10-03-23 2088 01 DE-Frei3c 00 (DE-627)1294704400 AMS:16 Associative rings and algebras 2088 01 DE-Frei3c 00 (DE-627)1294704397 AMS:18 Category theory; homological algebra |
spelling |
10.1112/blms.12364 doi (DE-627)1838874542 (DE-599)KXP1838874542 DE-627 ger DE-627 rda eng 16D90 16G10 18F30 msc Chen, Xiaofa verfasserin aut Liftable derived equivalences and objective categories Version of Record online: 22 June 2020 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 10.03.2023 We give two proofs of the following theorem and a partial generalization: if a finite-dimensional algebraAis derived equivalent to a smooth projective scheme, then any derived equivalence betweenAand another algebraBis standard, that is, isomorphic to the derived tensor functor by a two-sided tilting complex. The main ingredients of the proofs are as follows: (1) between the derived categories of two module categories, liftable functors coincide with standard functors; (2) any derived equivalence between a module category and an abelian category is uniquely factorized as the composition of a pseudo-identity and a liftable derived equivalence; (3) the derived category of coherent sheaves on a certain class of projective schemes is triangle-objective, that is, any triangle autoequivalence on it, which preserves the isomorphism classes of all objects, is necessarily isomorphic to the identity functor. Chen, Xiao-Wu verfasserin aut Enthalten in London Mathematical Society Bulletin of the London Mathematical Society Hoboken, NJ : Wiley, 1969 Volume 52(2020), Issue 5, pp. 816-834 Online-Ressource (DE-627)270132023 (DE-600)1476985-2 (DE-576)078129966 1469-2120 nnns volume:52 year:2020 number:5 pages:816-834 https://doi.org/10.1112/blms.12364 Resolving-System Full Text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 52 2020 5 816-834 Volume 52(2020), Issue 5, pp. 816-834 2088 01 DE-Frei3c 4287040783 00 --%%-- --%%-- --%%-- n Funding text/Acknowledgements: [...] The paper was revised when the second author visited University of Bielefeld, with a research stay partially supported by the Simons Foundation and by the Mathematisches Forschungsinstitut Oberwolfach. l01 10-03-23 2088 01 DE-Frei3c 00 (DE-627)1294704400 AMS:16 Associative rings and algebras 2088 01 DE-Frei3c 00 (DE-627)1294704397 AMS:18 Category theory; homological algebra |
allfields_unstemmed |
10.1112/blms.12364 doi (DE-627)1838874542 (DE-599)KXP1838874542 DE-627 ger DE-627 rda eng 16D90 16G10 18F30 msc Chen, Xiaofa verfasserin aut Liftable derived equivalences and objective categories Version of Record online: 22 June 2020 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 10.03.2023 We give two proofs of the following theorem and a partial generalization: if a finite-dimensional algebraAis derived equivalent to a smooth projective scheme, then any derived equivalence betweenAand another algebraBis standard, that is, isomorphic to the derived tensor functor by a two-sided tilting complex. The main ingredients of the proofs are as follows: (1) between the derived categories of two module categories, liftable functors coincide with standard functors; (2) any derived equivalence between a module category and an abelian category is uniquely factorized as the composition of a pseudo-identity and a liftable derived equivalence; (3) the derived category of coherent sheaves on a certain class of projective schemes is triangle-objective, that is, any triangle autoequivalence on it, which preserves the isomorphism classes of all objects, is necessarily isomorphic to the identity functor. Chen, Xiao-Wu verfasserin aut Enthalten in London Mathematical Society Bulletin of the London Mathematical Society Hoboken, NJ : Wiley, 1969 Volume 52(2020), Issue 5, pp. 816-834 Online-Ressource (DE-627)270132023 (DE-600)1476985-2 (DE-576)078129966 1469-2120 nnns volume:52 year:2020 number:5 pages:816-834 https://doi.org/10.1112/blms.12364 Resolving-System Full Text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 52 2020 5 816-834 Volume 52(2020), Issue 5, pp. 816-834 2088 01 DE-Frei3c 4287040783 00 --%%-- --%%-- --%%-- n Funding text/Acknowledgements: [...] The paper was revised when the second author visited University of Bielefeld, with a research stay partially supported by the Simons Foundation and by the Mathematisches Forschungsinstitut Oberwolfach. l01 10-03-23 2088 01 DE-Frei3c 00 (DE-627)1294704400 AMS:16 Associative rings and algebras 2088 01 DE-Frei3c 00 (DE-627)1294704397 AMS:18 Category theory; homological algebra |
allfieldsGer |
10.1112/blms.12364 doi (DE-627)1838874542 (DE-599)KXP1838874542 DE-627 ger DE-627 rda eng 16D90 16G10 18F30 msc Chen, Xiaofa verfasserin aut Liftable derived equivalences and objective categories Version of Record online: 22 June 2020 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 10.03.2023 We give two proofs of the following theorem and a partial generalization: if a finite-dimensional algebraAis derived equivalent to a smooth projective scheme, then any derived equivalence betweenAand another algebraBis standard, that is, isomorphic to the derived tensor functor by a two-sided tilting complex. The main ingredients of the proofs are as follows: (1) between the derived categories of two module categories, liftable functors coincide with standard functors; (2) any derived equivalence between a module category and an abelian category is uniquely factorized as the composition of a pseudo-identity and a liftable derived equivalence; (3) the derived category of coherent sheaves on a certain class of projective schemes is triangle-objective, that is, any triangle autoequivalence on it, which preserves the isomorphism classes of all objects, is necessarily isomorphic to the identity functor. Chen, Xiao-Wu verfasserin aut Enthalten in London Mathematical Society Bulletin of the London Mathematical Society Hoboken, NJ : Wiley, 1969 Volume 52(2020), Issue 5, pp. 816-834 Online-Ressource (DE-627)270132023 (DE-600)1476985-2 (DE-576)078129966 1469-2120 nnns volume:52 year:2020 number:5 pages:816-834 https://doi.org/10.1112/blms.12364 Resolving-System Full Text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 52 2020 5 816-834 Volume 52(2020), Issue 5, pp. 816-834 2088 01 DE-Frei3c 4287040783 00 --%%-- --%%-- --%%-- n Funding text/Acknowledgements: [...] The paper was revised when the second author visited University of Bielefeld, with a research stay partially supported by the Simons Foundation and by the Mathematisches Forschungsinstitut Oberwolfach. l01 10-03-23 2088 01 DE-Frei3c 00 (DE-627)1294704400 AMS:16 Associative rings and algebras 2088 01 DE-Frei3c 00 (DE-627)1294704397 AMS:18 Category theory; homological algebra |
allfieldsSound |
10.1112/blms.12364 doi (DE-627)1838874542 (DE-599)KXP1838874542 DE-627 ger DE-627 rda eng 16D90 16G10 18F30 msc Chen, Xiaofa verfasserin aut Liftable derived equivalences and objective categories Version of Record online: 22 June 2020 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Last seen: 10.03.2023 We give two proofs of the following theorem and a partial generalization: if a finite-dimensional algebraAis derived equivalent to a smooth projective scheme, then any derived equivalence betweenAand another algebraBis standard, that is, isomorphic to the derived tensor functor by a two-sided tilting complex. The main ingredients of the proofs are as follows: (1) between the derived categories of two module categories, liftable functors coincide with standard functors; (2) any derived equivalence between a module category and an abelian category is uniquely factorized as the composition of a pseudo-identity and a liftable derived equivalence; (3) the derived category of coherent sheaves on a certain class of projective schemes is triangle-objective, that is, any triangle autoequivalence on it, which preserves the isomorphism classes of all objects, is necessarily isomorphic to the identity functor. Chen, Xiao-Wu verfasserin aut Enthalten in London Mathematical Society Bulletin of the London Mathematical Society Hoboken, NJ : Wiley, 1969 Volume 52(2020), Issue 5, pp. 816-834 Online-Ressource (DE-627)270132023 (DE-600)1476985-2 (DE-576)078129966 1469-2120 nnns volume:52 year:2020 number:5 pages:816-834 https://doi.org/10.1112/blms.12364 Resolving-System Full Text at Publisher lizenzpflichtig GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 52 2020 5 816-834 Volume 52(2020), Issue 5, pp. 816-834 2088 01 DE-Frei3c 4287040783 00 --%%-- --%%-- --%%-- n Funding text/Acknowledgements: [...] The paper was revised when the second author visited University of Bielefeld, with a research stay partially supported by the Simons Foundation and by the Mathematisches Forschungsinstitut Oberwolfach. l01 10-03-23 2088 01 DE-Frei3c 00 (DE-627)1294704400 AMS:16 Associative rings and algebras 2088 01 DE-Frei3c 00 (DE-627)1294704397 AMS:18 Category theory; homological algebra |
language |
English |
source |
Enthalten in Bulletin of the London Mathematical Society Volume 52(2020), Issue 5, pp. 816-834 volume:52 year:2020 number:5 pages:816-834 |
sourceStr |
Enthalten in Bulletin of the London Mathematical Society Volume 52(2020), Issue 5, pp. 816-834 volume:52 year:2020 number:5 pages:816-834 |
format_phy_str_mv |
Article |
building |
2088:0 |
institution |
findex.gbv.de |
selectbib_iln_str_mv |
2088@01 |
isfreeaccess_bool |
false |
container_title |
Bulletin of the London Mathematical Society |
authorswithroles_txt_mv |
Chen, Xiaofa @@aut@@ Chen, Xiao-Wu @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
270132023 |
id |
1838874542 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a2200265 4500</leader><controlfield tag="001">1838874542</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310113543.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1112/blms.12364</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1838874542</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1838874542</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16D90</subfield><subfield code="a">16G10</subfield><subfield code="a">18F30</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Xiaofa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Liftable derived equivalences and objective categories</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Version of Record online: 22 June 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Last seen: 10.03.2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We give two proofs of the following theorem and a partial generalization: if a finite-dimensional algebraAis derived equivalent to a smooth projective scheme, then any derived equivalence betweenAand another algebraBis standard, that is, isomorphic to the derived tensor functor by a two-sided tilting complex. The main ingredients of the proofs are as follows: (1) between the derived categories of two module categories, liftable functors coincide with standard functors; (2) any derived equivalence between a module category and an abelian category is uniquely factorized as the composition of a pseudo-identity and a liftable derived equivalence; (3) the derived category of coherent sheaves on a certain class of projective schemes is triangle-objective, that is, any triangle autoequivalence on it, which preserves the isomorphism classes of all objects, is necessarily isomorphic to the identity functor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xiao-Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">London Mathematical Society</subfield><subfield code="t">Bulletin of the London Mathematical Society</subfield><subfield code="d">Hoboken, NJ : Wiley, 1969</subfield><subfield code="g">Volume 52(2020), Issue 5, pp. 816-834</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)270132023</subfield><subfield code="w">(DE-600)1476985-2</subfield><subfield code="w">(DE-576)078129966</subfield><subfield code="x">1469-2120</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:816-834</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1112/blms.12364</subfield><subfield code="x">Resolving-System</subfield><subfield code="y">Full Text at Publisher</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-Frei3c</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="h">816-834</subfield><subfield code="y">Volume 52(2020), Issue 5, pp. 816-834</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">2088</subfield><subfield code="1">01</subfield><subfield code="x">DE-Frei3c</subfield><subfield code="b">4287040783</subfield><subfield code="c">00</subfield><subfield code="f">--%%--</subfield><subfield code="d">--%%--</subfield><subfield code="e">--%%--</subfield><subfield code="j">n</subfield><subfield code="k">Funding text/Acknowledgements: [...] The paper was revised when the second author visited University of Bielefeld, with a research stay partially supported by the Simons Foundation and by the Mathematisches Forschungsinstitut Oberwolfach.</subfield><subfield code="y">l01</subfield><subfield code="z">10-03-23</subfield></datafield><datafield tag="983" ind1=" " ind2=" "><subfield code="2">2088</subfield><subfield code="1">01</subfield><subfield code="x">DE-Frei3c</subfield><subfield code="8">00</subfield><subfield code="0">(DE-627)1294704400</subfield><subfield code="a">AMS:16</subfield><subfield code="b">Associative rings and algebras</subfield></datafield><datafield tag="983" ind1=" " ind2=" "><subfield code="2">2088</subfield><subfield code="1">01</subfield><subfield code="x">DE-Frei3c</subfield><subfield code="8">00</subfield><subfield code="0">(DE-627)1294704397</subfield><subfield code="a">AMS:18</subfield><subfield code="b">Category theory; homological algebra</subfield></datafield></record></collection>
|
standort_str_mv |
--%%-- |
standort_iln_str_mv |
2088:--%%-- DE-Frei3c:--%%-- |
author |
Chen, Xiaofa |
spellingShingle |
Chen, Xiaofa msc 16D90 Liftable derived equivalences and objective categories |
authorStr |
Chen, Xiaofa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)270132023 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
KXP SWB GVK |
remote_str |
true |
last_changed_iln_str_mv |
2088@10-03-23 |
illustrated |
Not Illustrated |
issn |
1469-2120 |
notation_local_iln_str_mv |
2088:AMS:16 DE-Frei3c:AMS:16 2088:AMS:18 DE-Frei3c:AMS:18 |
topic_title |
16D90 16G10 18F30 msc Liftable derived equivalences and objective categories |
topic |
msc 16D90 |
topic_unstemmed |
msc 16D90 |
topic_browse |
msc 16D90 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
standort_txtP_mv |
--%%-- |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Bulletin of the London Mathematical Society |
hierarchy_parent_id |
270132023 |
signature |
--%%-- |
signature_str_mv |
--%%-- |
hierarchy_top_title |
Bulletin of the London Mathematical Society |
edition |
Version of Record online: 22 June 2020 |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)270132023 (DE-600)1476985-2 (DE-576)078129966 |
title |
Liftable derived equivalences and objective categories |
ctrlnum |
(DE-627)1838874542 (DE-599)KXP1838874542 |
exemplarkommentar_str_mv |
2088@Funding text/Acknowledgements: [...] The paper was revised when the second author visited University of Bielefeld, with a research stay partially supported by the Simons Foundation and by the Mathematisches Forschungsinstitut Oberwolfach. |
title_full |
Liftable derived equivalences and objective categories |
author_sort |
Chen, Xiaofa |
journal |
Bulletin of the London Mathematical Society |
journalStr |
Bulletin of the London Mathematical Society |
callnumber-first-code |
- |
lang_code |
eng |
class_local |
2088 01 DE-Frei3c 00 (DE-627)1294704400 AMS:16 Associative rings and algebras 2088 01 DE-Frei3c 00 (DE-627)1294704397 AMS:18 Category theory; homological algebra |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
816 |
class_local_iln |
2088:Associative rings and algebras DE-Frei3c:Associative rings and algebras 2088:Category theory; homological algebra DE-Frei3c:Category theory; homological algebra |
author_browse |
Chen, Xiaofa Chen, Xiao-Wu |
selectkey |
2088:l |
container_volume |
52 |
class |
16D90 16G10 18F30 msc 2088 01 DE-Frei3c 00 (DE-627)1294704400 AMS:16 Associative rings and algebras 2088 01 DE-Frei3c 00 (DE-627)1294704397 AMS:18 Category theory; homological algebra |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Xiaofa |
classname_local_iln_str_mv |
2088:Associative rings and algebras DE-Frei3c:Associative rings and algebras 2088:Category theory; homological algebra DE-Frei3c:Category theory; homological algebra |
doi_str_mv |
10.1112/blms.12364 |
normlink |
1294704400 1294704397 |
normlink_prefix_str_mv |
(DE-627)1294704400 (DE-627)1294704397 |
author2-role |
verfasserin |
title_sort |
liftable derived equivalences and objective categories |
title_auth |
Liftable derived equivalences and objective categories |
abstract |
We give two proofs of the following theorem and a partial generalization: if a finite-dimensional algebraAis derived equivalent to a smooth projective scheme, then any derived equivalence betweenAand another algebraBis standard, that is, isomorphic to the derived tensor functor by a two-sided tilting complex. The main ingredients of the proofs are as follows: (1) between the derived categories of two module categories, liftable functors coincide with standard functors; (2) any derived equivalence between a module category and an abelian category is uniquely factorized as the composition of a pseudo-identity and a liftable derived equivalence; (3) the derived category of coherent sheaves on a certain class of projective schemes is triangle-objective, that is, any triangle autoequivalence on it, which preserves the isomorphism classes of all objects, is necessarily isomorphic to the identity functor. Last seen: 10.03.2023 |
abstractGer |
We give two proofs of the following theorem and a partial generalization: if a finite-dimensional algebraAis derived equivalent to a smooth projective scheme, then any derived equivalence betweenAand another algebraBis standard, that is, isomorphic to the derived tensor functor by a two-sided tilting complex. The main ingredients of the proofs are as follows: (1) between the derived categories of two module categories, liftable functors coincide with standard functors; (2) any derived equivalence between a module category and an abelian category is uniquely factorized as the composition of a pseudo-identity and a liftable derived equivalence; (3) the derived category of coherent sheaves on a certain class of projective schemes is triangle-objective, that is, any triangle autoequivalence on it, which preserves the isomorphism classes of all objects, is necessarily isomorphic to the identity functor. Last seen: 10.03.2023 |
abstract_unstemmed |
We give two proofs of the following theorem and a partial generalization: if a finite-dimensional algebraAis derived equivalent to a smooth projective scheme, then any derived equivalence betweenAand another algebraBis standard, that is, isomorphic to the derived tensor functor by a two-sided tilting complex. The main ingredients of the proofs are as follows: (1) between the derived categories of two module categories, liftable functors coincide with standard functors; (2) any derived equivalence between a module category and an abelian category is uniquely factorized as the composition of a pseudo-identity and a liftable derived equivalence; (3) the derived category of coherent sheaves on a certain class of projective schemes is triangle-objective, that is, any triangle autoequivalence on it, which preserves the isomorphism classes of all objects, is necessarily isomorphic to the identity functor. Last seen: 10.03.2023 |
collection_details |
GBV_USEFLAG_U GBV_ILN_2088 ISIL_DE-Frei3c SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Liftable derived equivalences and objective categories |
url |
https://doi.org/10.1112/blms.12364 |
ausleihindikator_str_mv |
2088:- |
remote_bool |
true |
author2 |
Chen, Xiao-Wu |
author2Str |
Chen, Xiao-Wu |
ppnlink |
270132023 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1112/blms.12364 |
callnumber-a |
--%%-- |
up_date |
2024-07-04T10:20:14.449Z |
_version_ |
1803643429271371776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a2200265 4500</leader><controlfield tag="001">1838874542</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310113543.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1112/blms.12364</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1838874542</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1838874542</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16D90</subfield><subfield code="a">16G10</subfield><subfield code="a">18F30</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Xiaofa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Liftable derived equivalences and objective categories</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Version of Record online: 22 June 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Last seen: 10.03.2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We give two proofs of the following theorem and a partial generalization: if a finite-dimensional algebraAis derived equivalent to a smooth projective scheme, then any derived equivalence betweenAand another algebraBis standard, that is, isomorphic to the derived tensor functor by a two-sided tilting complex. The main ingredients of the proofs are as follows: (1) between the derived categories of two module categories, liftable functors coincide with standard functors; (2) any derived equivalence between a module category and an abelian category is uniquely factorized as the composition of a pseudo-identity and a liftable derived equivalence; (3) the derived category of coherent sheaves on a certain class of projective schemes is triangle-objective, that is, any triangle autoequivalence on it, which preserves the isomorphism classes of all objects, is necessarily isomorphic to the identity functor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xiao-Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">London Mathematical Society</subfield><subfield code="t">Bulletin of the London Mathematical Society</subfield><subfield code="d">Hoboken, NJ : Wiley, 1969</subfield><subfield code="g">Volume 52(2020), Issue 5, pp. 816-834</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)270132023</subfield><subfield code="w">(DE-600)1476985-2</subfield><subfield code="w">(DE-576)078129966</subfield><subfield code="x">1469-2120</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:816-834</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1112/blms.12364</subfield><subfield code="x">Resolving-System</subfield><subfield code="y">Full Text at Publisher</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-Frei3c</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="h">816-834</subfield><subfield code="y">Volume 52(2020), Issue 5, pp. 816-834</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">2088</subfield><subfield code="1">01</subfield><subfield code="x">DE-Frei3c</subfield><subfield code="b">4287040783</subfield><subfield code="c">00</subfield><subfield code="f">--%%--</subfield><subfield code="d">--%%--</subfield><subfield code="e">--%%--</subfield><subfield code="j">n</subfield><subfield code="k">Funding text/Acknowledgements: [...] The paper was revised when the second author visited University of Bielefeld, with a research stay partially supported by the Simons Foundation and by the Mathematisches Forschungsinstitut Oberwolfach.</subfield><subfield code="y">l01</subfield><subfield code="z">10-03-23</subfield></datafield><datafield tag="983" ind1=" " ind2=" "><subfield code="2">2088</subfield><subfield code="1">01</subfield><subfield code="x">DE-Frei3c</subfield><subfield code="8">00</subfield><subfield code="0">(DE-627)1294704400</subfield><subfield code="a">AMS:16</subfield><subfield code="b">Associative rings and algebras</subfield></datafield><datafield tag="983" ind1=" " ind2=" "><subfield code="2">2088</subfield><subfield code="1">01</subfield><subfield code="x">DE-Frei3c</subfield><subfield code="8">00</subfield><subfield code="0">(DE-627)1294704397</subfield><subfield code="a">AMS:18</subfield><subfield code="b">Category theory; homological algebra</subfield></datafield></record></collection>
|
score |
7.402669 |