Does change in respondents' attention affect willingness to accept estimates from choice experiments?
Autor*in: |
Hildebrand, Kayla [verfasserIn] Chung, Chanjin [verfasserIn] Boyer, Tracy A. [verfasserIn] Palma, Marco A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Applied economics - New York, NY : Routledge, 1969, 55(2023), 28, Seite 3279-3295 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2023 ; number:28 ; pages:3279-3295 |
Links: |
---|
DOI / URN: |
10.1080/00036846.2022.2114989 |
---|
Katalog-ID: |
1850950954 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | 1850950954 | ||
003 | DE-627 | ||
005 | 20240122153342.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230626s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/00036846.2022.2114989 |2 doi | |
035 | |a (DE-627)1850950954 | ||
035 | |a (DE-599)KXP1850950954 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Hildebrand, Kayla |e verfasserin |4 aut | |
245 | 1 | 0 | |a Does change in respondents' attention affect willingness to accept estimates from choice experiments? |c Kayla Hildebrand, Chanjin Chung, Tracy A. Boyer, Marco Palma |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
650 | 4 | |a discrete choice experiments |7 (dpeaa)DE-206 | |
650 | 4 | |a eye tracking measures |7 (dpeaa)DE-206 | |
650 | 4 | |a generalized multinomial logit |7 (dpeaa)DE-206 | |
650 | 4 | |a Scale heterogeneity |7 (dpeaa)DE-206 | |
650 | 4 | |a WTA |7 (dpeaa)DE-206 | |
700 | 1 | |a Chung, Chanjin |e verfasserin |0 (DE-588)17165207X |0 (DE-627)061878723 |0 (DE-576)132429489 |4 aut | |
700 | 1 | |a Boyer, Tracy A. |e verfasserin |4 aut | |
700 | 1 | |a Palma, Marco A. |e verfasserin |0 (DE-588)1044875518 |0 (DE-627)773007687 |0 (DE-576)398169241 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied economics |d New York, NY : Routledge, 1969 |g 55(2023), 28, Seite 3279-3295 |h Online-Ressource |w (DE-627)269016880 |w (DE-600)1473581-7 |w (DE-576)077662199 |x 1466-4283 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2023 |g number:28 |g pages:3279-3295 |
856 | 4 | 0 | |u https://www.tandfonline.com/doi/pdf/10.1080/00036846.2022.2114989 |x Verlag |z lizenzpflichtig |
856 | 4 | 0 | |u https://doi.org/10.1080/00036846.2022.2114989 |x Resolving-System |z lizenzpflichtig |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ILN_26 | ||
912 | |a ISIL_DE-206 | ||
912 | |a SYSFLAG_1 | ||
912 | |a GBV_KXP | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 55 |j 2023 |e 28 |h 3279-3295 | ||
980 | |2 26 |1 01 |x 0206 |b 4343388603 |y x1z |z 26-06-23 | ||
982 | |2 26 |1 00 |x DE-206 |b This study conducts a discrete choice experiment to estimate turfgrass producers’ willingness to accept (WTA) values using different logit models and specifications to capture respondents’ attention. We first estimate the mixed logit model and a generalized multinomial logit model with and without eye-tracking variables to demonstrate the importance of accounting for individuals’ differing levels of attention during an experiment. Our study finds that marginal WTA values are biased when individuals’ attention changes are not properly accounted for in the model specification. This finding leads to our second objective, to determine whether attention changes can be fully captured in the absence of eye tracking data by testing six alternative model specifications. All six models are able to detect learning and fatigue effects but are unable to fully capture changes in attention. Of the six alternative models tested, the two models that implement panel data offer more reliable and significant results, suggesting the type of data and model specification used may play an important role in diagnosing attention changes when compared to various heterogeneity models. |
author_variant |
k h kh c c cc t a b ta tab m a p ma map |
---|---|
matchkey_str |
article:14664283:2023----::oshnenepnetatninfetilnnstacpetm |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1080/00036846.2022.2114989 doi (DE-627)1850950954 (DE-599)KXP1850950954 DE-627 ger DE-627 rda eng Hildebrand, Kayla verfasserin aut Does change in respondents' attention affect willingness to accept estimates from choice experiments? Kayla Hildebrand, Chanjin Chung, Tracy A. Boyer, Marco Palma 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier discrete choice experiments (dpeaa)DE-206 eye tracking measures (dpeaa)DE-206 generalized multinomial logit (dpeaa)DE-206 Scale heterogeneity (dpeaa)DE-206 WTA (dpeaa)DE-206 Chung, Chanjin verfasserin (DE-588)17165207X (DE-627)061878723 (DE-576)132429489 aut Boyer, Tracy A. verfasserin aut Palma, Marco A. verfasserin (DE-588)1044875518 (DE-627)773007687 (DE-576)398169241 aut Enthalten in Applied economics New York, NY : Routledge, 1969 55(2023), 28, Seite 3279-3295 Online-Ressource (DE-627)269016880 (DE-600)1473581-7 (DE-576)077662199 1466-4283 nnns volume:55 year:2023 number:28 pages:3279-3295 https://www.tandfonline.com/doi/pdf/10.1080/00036846.2022.2114989 Verlag lizenzpflichtig https://doi.org/10.1080/00036846.2022.2114989 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_152 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2023 28 3279-3295 26 01 0206 4343388603 x1z 26-06-23 26 00 DE-206 This study conducts a discrete choice experiment to estimate turfgrass producers’ willingness to accept (WTA) values using different logit models and specifications to capture respondents’ attention. We first estimate the mixed logit model and a generalized multinomial logit model with and without eye-tracking variables to demonstrate the importance of accounting for individuals’ differing levels of attention during an experiment. Our study finds that marginal WTA values are biased when individuals’ attention changes are not properly accounted for in the model specification. This finding leads to our second objective, to determine whether attention changes can be fully captured in the absence of eye tracking data by testing six alternative model specifications. All six models are able to detect learning and fatigue effects but are unable to fully capture changes in attention. Of the six alternative models tested, the two models that implement panel data offer more reliable and significant results, suggesting the type of data and model specification used may play an important role in diagnosing attention changes when compared to various heterogeneity models. |
spelling |
10.1080/00036846.2022.2114989 doi (DE-627)1850950954 (DE-599)KXP1850950954 DE-627 ger DE-627 rda eng Hildebrand, Kayla verfasserin aut Does change in respondents' attention affect willingness to accept estimates from choice experiments? Kayla Hildebrand, Chanjin Chung, Tracy A. Boyer, Marco Palma 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier discrete choice experiments (dpeaa)DE-206 eye tracking measures (dpeaa)DE-206 generalized multinomial logit (dpeaa)DE-206 Scale heterogeneity (dpeaa)DE-206 WTA (dpeaa)DE-206 Chung, Chanjin verfasserin (DE-588)17165207X (DE-627)061878723 (DE-576)132429489 aut Boyer, Tracy A. verfasserin aut Palma, Marco A. verfasserin (DE-588)1044875518 (DE-627)773007687 (DE-576)398169241 aut Enthalten in Applied economics New York, NY : Routledge, 1969 55(2023), 28, Seite 3279-3295 Online-Ressource (DE-627)269016880 (DE-600)1473581-7 (DE-576)077662199 1466-4283 nnns volume:55 year:2023 number:28 pages:3279-3295 https://www.tandfonline.com/doi/pdf/10.1080/00036846.2022.2114989 Verlag lizenzpflichtig https://doi.org/10.1080/00036846.2022.2114989 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_152 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2023 28 3279-3295 26 01 0206 4343388603 x1z 26-06-23 26 00 DE-206 This study conducts a discrete choice experiment to estimate turfgrass producers’ willingness to accept (WTA) values using different logit models and specifications to capture respondents’ attention. We first estimate the mixed logit model and a generalized multinomial logit model with and without eye-tracking variables to demonstrate the importance of accounting for individuals’ differing levels of attention during an experiment. Our study finds that marginal WTA values are biased when individuals’ attention changes are not properly accounted for in the model specification. This finding leads to our second objective, to determine whether attention changes can be fully captured in the absence of eye tracking data by testing six alternative model specifications. All six models are able to detect learning and fatigue effects but are unable to fully capture changes in attention. Of the six alternative models tested, the two models that implement panel data offer more reliable and significant results, suggesting the type of data and model specification used may play an important role in diagnosing attention changes when compared to various heterogeneity models. |
allfields_unstemmed |
10.1080/00036846.2022.2114989 doi (DE-627)1850950954 (DE-599)KXP1850950954 DE-627 ger DE-627 rda eng Hildebrand, Kayla verfasserin aut Does change in respondents' attention affect willingness to accept estimates from choice experiments? Kayla Hildebrand, Chanjin Chung, Tracy A. Boyer, Marco Palma 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier discrete choice experiments (dpeaa)DE-206 eye tracking measures (dpeaa)DE-206 generalized multinomial logit (dpeaa)DE-206 Scale heterogeneity (dpeaa)DE-206 WTA (dpeaa)DE-206 Chung, Chanjin verfasserin (DE-588)17165207X (DE-627)061878723 (DE-576)132429489 aut Boyer, Tracy A. verfasserin aut Palma, Marco A. verfasserin (DE-588)1044875518 (DE-627)773007687 (DE-576)398169241 aut Enthalten in Applied economics New York, NY : Routledge, 1969 55(2023), 28, Seite 3279-3295 Online-Ressource (DE-627)269016880 (DE-600)1473581-7 (DE-576)077662199 1466-4283 nnns volume:55 year:2023 number:28 pages:3279-3295 https://www.tandfonline.com/doi/pdf/10.1080/00036846.2022.2114989 Verlag lizenzpflichtig https://doi.org/10.1080/00036846.2022.2114989 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_152 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2023 28 3279-3295 26 01 0206 4343388603 x1z 26-06-23 26 00 DE-206 This study conducts a discrete choice experiment to estimate turfgrass producers’ willingness to accept (WTA) values using different logit models and specifications to capture respondents’ attention. We first estimate the mixed logit model and a generalized multinomial logit model with and without eye-tracking variables to demonstrate the importance of accounting for individuals’ differing levels of attention during an experiment. Our study finds that marginal WTA values are biased when individuals’ attention changes are not properly accounted for in the model specification. This finding leads to our second objective, to determine whether attention changes can be fully captured in the absence of eye tracking data by testing six alternative model specifications. All six models are able to detect learning and fatigue effects but are unable to fully capture changes in attention. Of the six alternative models tested, the two models that implement panel data offer more reliable and significant results, suggesting the type of data and model specification used may play an important role in diagnosing attention changes when compared to various heterogeneity models. |
allfieldsGer |
10.1080/00036846.2022.2114989 doi (DE-627)1850950954 (DE-599)KXP1850950954 DE-627 ger DE-627 rda eng Hildebrand, Kayla verfasserin aut Does change in respondents' attention affect willingness to accept estimates from choice experiments? Kayla Hildebrand, Chanjin Chung, Tracy A. Boyer, Marco Palma 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier discrete choice experiments (dpeaa)DE-206 eye tracking measures (dpeaa)DE-206 generalized multinomial logit (dpeaa)DE-206 Scale heterogeneity (dpeaa)DE-206 WTA (dpeaa)DE-206 Chung, Chanjin verfasserin (DE-588)17165207X (DE-627)061878723 (DE-576)132429489 aut Boyer, Tracy A. verfasserin aut Palma, Marco A. verfasserin (DE-588)1044875518 (DE-627)773007687 (DE-576)398169241 aut Enthalten in Applied economics New York, NY : Routledge, 1969 55(2023), 28, Seite 3279-3295 Online-Ressource (DE-627)269016880 (DE-600)1473581-7 (DE-576)077662199 1466-4283 nnns volume:55 year:2023 number:28 pages:3279-3295 https://www.tandfonline.com/doi/pdf/10.1080/00036846.2022.2114989 Verlag lizenzpflichtig https://doi.org/10.1080/00036846.2022.2114989 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_152 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2023 28 3279-3295 26 01 0206 4343388603 x1z 26-06-23 26 00 DE-206 This study conducts a discrete choice experiment to estimate turfgrass producers’ willingness to accept (WTA) values using different logit models and specifications to capture respondents’ attention. We first estimate the mixed logit model and a generalized multinomial logit model with and without eye-tracking variables to demonstrate the importance of accounting for individuals’ differing levels of attention during an experiment. Our study finds that marginal WTA values are biased when individuals’ attention changes are not properly accounted for in the model specification. This finding leads to our second objective, to determine whether attention changes can be fully captured in the absence of eye tracking data by testing six alternative model specifications. All six models are able to detect learning and fatigue effects but are unable to fully capture changes in attention. Of the six alternative models tested, the two models that implement panel data offer more reliable and significant results, suggesting the type of data and model specification used may play an important role in diagnosing attention changes when compared to various heterogeneity models. |
allfieldsSound |
10.1080/00036846.2022.2114989 doi (DE-627)1850950954 (DE-599)KXP1850950954 DE-627 ger DE-627 rda eng Hildebrand, Kayla verfasserin aut Does change in respondents' attention affect willingness to accept estimates from choice experiments? Kayla Hildebrand, Chanjin Chung, Tracy A. Boyer, Marco Palma 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier discrete choice experiments (dpeaa)DE-206 eye tracking measures (dpeaa)DE-206 generalized multinomial logit (dpeaa)DE-206 Scale heterogeneity (dpeaa)DE-206 WTA (dpeaa)DE-206 Chung, Chanjin verfasserin (DE-588)17165207X (DE-627)061878723 (DE-576)132429489 aut Boyer, Tracy A. verfasserin aut Palma, Marco A. verfasserin (DE-588)1044875518 (DE-627)773007687 (DE-576)398169241 aut Enthalten in Applied economics New York, NY : Routledge, 1969 55(2023), 28, Seite 3279-3295 Online-Ressource (DE-627)269016880 (DE-600)1473581-7 (DE-576)077662199 1466-4283 nnns volume:55 year:2023 number:28 pages:3279-3295 https://www.tandfonline.com/doi/pdf/10.1080/00036846.2022.2114989 Verlag lizenzpflichtig https://doi.org/10.1080/00036846.2022.2114989 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_152 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2023 28 3279-3295 26 01 0206 4343388603 x1z 26-06-23 26 00 DE-206 This study conducts a discrete choice experiment to estimate turfgrass producers’ willingness to accept (WTA) values using different logit models and specifications to capture respondents’ attention. We first estimate the mixed logit model and a generalized multinomial logit model with and without eye-tracking variables to demonstrate the importance of accounting for individuals’ differing levels of attention during an experiment. Our study finds that marginal WTA values are biased when individuals’ attention changes are not properly accounted for in the model specification. This finding leads to our second objective, to determine whether attention changes can be fully captured in the absence of eye tracking data by testing six alternative model specifications. All six models are able to detect learning and fatigue effects but are unable to fully capture changes in attention. Of the six alternative models tested, the two models that implement panel data offer more reliable and significant results, suggesting the type of data and model specification used may play an important role in diagnosing attention changes when compared to various heterogeneity models. |
language |
English |
source |
Enthalten in Applied economics 55(2023), 28, Seite 3279-3295 volume:55 year:2023 number:28 pages:3279-3295 |
sourceStr |
Enthalten in Applied economics 55(2023), 28, Seite 3279-3295 volume:55 year:2023 number:28 pages:3279-3295 |
format_phy_str_mv |
Article |
building |
26:1 |
institution |
findex.gbv.de |
selectbib_iln_str_mv |
26@1z |
topic_facet |
discrete choice experiments eye tracking measures generalized multinomial logit Scale heterogeneity WTA |
sw_local_iln_str_mv |
26: DE-206: |
isfreeaccess_bool |
false |
container_title |
Applied economics |
authorswithroles_txt_mv |
Hildebrand, Kayla @@aut@@ Chung, Chanjin @@aut@@ Boyer, Tracy A. @@aut@@ Palma, Marco A. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
269016880 |
id |
1850950954 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">1850950954</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240122153342.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230626s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/00036846.2022.2114989</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1850950954</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1850950954</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hildebrand, Kayla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Does change in respondents' attention affect willingness to accept estimates from choice experiments?</subfield><subfield code="c">Kayla Hildebrand, Chanjin Chung, Tracy A. Boyer, Marco Palma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete choice experiments</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">eye tracking measures</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generalized multinomial logit</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scale heterogeneity</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">WTA</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chung, Chanjin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)17165207X</subfield><subfield code="0">(DE-627)061878723</subfield><subfield code="0">(DE-576)132429489</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boyer, Tracy A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palma, Marco A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1044875518</subfield><subfield code="0">(DE-627)773007687</subfield><subfield code="0">(DE-576)398169241</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied economics</subfield><subfield code="d">New York, NY : Routledge, 1969</subfield><subfield code="g">55(2023), 28, Seite 3279-3295</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)269016880</subfield><subfield code="w">(DE-600)1473581-7</subfield><subfield code="w">(DE-576)077662199</subfield><subfield code="x">1466-4283</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:28</subfield><subfield code="g">pages:3279-3295</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tandfonline.com/doi/pdf/10.1080/00036846.2022.2114989</subfield><subfield code="x">Verlag</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/00036846.2022.2114989</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2023</subfield><subfield code="e">28</subfield><subfield code="h">3279-3295</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">01</subfield><subfield code="x">0206</subfield><subfield code="b">4343388603</subfield><subfield code="y">x1z</subfield><subfield code="z">26-06-23</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="b">This study conducts a discrete choice experiment to estimate turfgrass producers’ willingness to accept (WTA) values using different logit models and specifications to capture respondents’ attention. We first estimate the mixed logit model and a generalized multinomial logit model with and without eye-tracking variables to demonstrate the importance of accounting for individuals’ differing levels of attention during an experiment. Our study finds that marginal WTA values are biased when individuals’ attention changes are not properly accounted for in the model specification. This finding leads to our second objective, to determine whether attention changes can be fully captured in the absence of eye tracking data by testing six alternative model specifications. All six models are able to detect learning and fatigue effects but are unable to fully capture changes in attention. Of the six alternative models tested, the two models that implement panel data offer more reliable and significant results, suggesting the type of data and model specification used may play an important role in diagnosing attention changes when compared to various heterogeneity models.</subfield></datafield></record></collection>
|
author |
Hildebrand, Kayla |
spellingShingle |
Hildebrand, Kayla misc discrete choice experiments misc eye tracking measures misc generalized multinomial logit misc Scale heterogeneity misc WTA Does change in respondents' attention affect willingness to accept estimates from choice experiments? |
authorStr |
Hildebrand, Kayla |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269016880 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
typewithnormlink_str_mv |
Person@(DE-588)17165207X DifferentiatedPerson@(DE-588)17165207X Person@(DE-588)1044875518 DifferentiatedPerson@(DE-588)1044875518 |
collection |
KXP GVK SWB |
remote_str |
true |
last_changed_iln_str_mv |
26@26-06-23 |
illustrated |
Not Illustrated |
issn |
1466-4283 |
topic_title |
26 00 DE-206 This study conducts a discrete choice experiment to estimate turfgrass producers’ willingness to accept (WTA) values using different logit models and specifications to capture respondents’ attention. We first estimate the mixed logit model and a generalized multinomial logit model with and without eye-tracking variables to demonstrate the importance of accounting for individuals’ differing levels of attention during an experiment. Our study finds that marginal WTA values are biased when individuals’ attention changes are not properly accounted for in the model specification. This finding leads to our second objective, to determine whether attention changes can be fully captured in the absence of eye tracking data by testing six alternative model specifications. All six models are able to detect learning and fatigue effects but are unable to fully capture changes in attention. Of the six alternative models tested, the two models that implement panel data offer more reliable and significant results, suggesting the type of data and model specification used may play an important role in diagnosing attention changes when compared to various heterogeneity models Does change in respondents' attention affect willingness to accept estimates from choice experiments? Kayla Hildebrand, Chanjin Chung, Tracy A. Boyer, Marco Palma discrete choice experiments (dpeaa)DE-206 eye tracking measures (dpeaa)DE-206 generalized multinomial logit (dpeaa)DE-206 Scale heterogeneity (dpeaa)DE-206 WTA (dpeaa)DE-206 |
topic |
misc discrete choice experiments misc eye tracking measures misc generalized multinomial logit misc Scale heterogeneity misc WTA |
topic_unstemmed |
misc discrete choice experiments misc eye tracking measures misc generalized multinomial logit misc Scale heterogeneity misc WTA |
topic_browse |
misc discrete choice experiments misc eye tracking measures misc generalized multinomial logit misc Scale heterogeneity misc WTA |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied economics |
normlinkwithtype_str_mv |
(DE-588)17165207X@Person (DE-588)17165207X@DifferentiatedPerson (DE-588)1044875518@Person (DE-588)1044875518@DifferentiatedPerson |
hierarchy_parent_id |
269016880 |
hierarchy_top_title |
Applied economics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)269016880 (DE-600)1473581-7 (DE-576)077662199 |
normlinkwithrole_str_mv |
(DE-588)17165207X@@aut@@ (DE-588)1044875518@@aut@@ |
title |
Does change in respondents' attention affect willingness to accept estimates from choice experiments? |
ctrlnum |
(DE-627)1850950954 (DE-599)KXP1850950954 |
title_full |
Does change in respondents' attention affect willingness to accept estimates from choice experiments? Kayla Hildebrand, Chanjin Chung, Tracy A. Boyer, Marco Palma |
author_sort |
Hildebrand, Kayla |
journal |
Applied economics |
journalStr |
Applied economics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
3279 |
author_browse |
Hildebrand, Kayla Chung, Chanjin Boyer, Tracy A. Palma, Marco A. |
selectkey |
26:x |
container_volume |
55 |
format_se |
Elektronische Aufsätze |
author-letter |
Hildebrand, Kayla |
doi_str_mv |
10.1080/00036846.2022.2114989 |
normlink |
17165207X 061878723 132429489 1044875518 773007687 398169241 |
normlink_prefix_str_mv |
(DE-588)17165207X (DE-627)061878723 (DE-576)132429489 (DE-588)1044875518 (DE-627)773007687 (DE-576)398169241 |
author2-role |
verfasserin |
title_sort |
does change in respondents' attention affect willingness to accept estimates from choice experiments? |
title_auth |
Does change in respondents' attention affect willingness to accept estimates from choice experiments? |
collection_details |
GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_152 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
28 |
title_short |
Does change in respondents' attention affect willingness to accept estimates from choice experiments? |
url |
https://www.tandfonline.com/doi/pdf/10.1080/00036846.2022.2114989 https://doi.org/10.1080/00036846.2022.2114989 |
ausleihindikator_str_mv |
26 |
rolewithnormlink_str_mv |
@@aut@@(DE-588)17165207X @@aut@@(DE-588)1044875518 |
remote_bool |
true |
author2 |
Chung, Chanjin Boyer, Tracy A. Palma, Marco A. |
author2Str |
Chung, Chanjin Boyer, Tracy A. Palma, Marco A. |
ppnlink |
269016880 |
GND_str_mv |
Chanjin Chung Chanjin, Chung Chung, Chanjin Palma, Marco Palma, Marco A. |
GND_txt_mv |
Chanjin Chung Chanjin, Chung Chung, Chanjin Palma, Marco Palma, Marco A. |
GND_txtF_mv |
Chanjin Chung Chanjin, Chung Chung, Chanjin Palma, Marco Palma, Marco A. |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1080/00036846.2022.2114989 |
up_date |
2024-07-04T14:52:34.442Z |
_version_ |
1803660562994823168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">1850950954</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240122153342.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230626s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/00036846.2022.2114989</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1850950954</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1850950954</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hildebrand, Kayla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Does change in respondents' attention affect willingness to accept estimates from choice experiments?</subfield><subfield code="c">Kayla Hildebrand, Chanjin Chung, Tracy A. Boyer, Marco Palma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete choice experiments</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">eye tracking measures</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generalized multinomial logit</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scale heterogeneity</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">WTA</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chung, Chanjin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)17165207X</subfield><subfield code="0">(DE-627)061878723</subfield><subfield code="0">(DE-576)132429489</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boyer, Tracy A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palma, Marco A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1044875518</subfield><subfield code="0">(DE-627)773007687</subfield><subfield code="0">(DE-576)398169241</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied economics</subfield><subfield code="d">New York, NY : Routledge, 1969</subfield><subfield code="g">55(2023), 28, Seite 3279-3295</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)269016880</subfield><subfield code="w">(DE-600)1473581-7</subfield><subfield code="w">(DE-576)077662199</subfield><subfield code="x">1466-4283</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:28</subfield><subfield code="g">pages:3279-3295</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tandfonline.com/doi/pdf/10.1080/00036846.2022.2114989</subfield><subfield code="x">Verlag</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/00036846.2022.2114989</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2023</subfield><subfield code="e">28</subfield><subfield code="h">3279-3295</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">01</subfield><subfield code="x">0206</subfield><subfield code="b">4343388603</subfield><subfield code="y">x1z</subfield><subfield code="z">26-06-23</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="b">This study conducts a discrete choice experiment to estimate turfgrass producers’ willingness to accept (WTA) values using different logit models and specifications to capture respondents’ attention. We first estimate the mixed logit model and a generalized multinomial logit model with and without eye-tracking variables to demonstrate the importance of accounting for individuals’ differing levels of attention during an experiment. Our study finds that marginal WTA values are biased when individuals’ attention changes are not properly accounted for in the model specification. This finding leads to our second objective, to determine whether attention changes can be fully captured in the absence of eye tracking data by testing six alternative model specifications. All six models are able to detect learning and fatigue effects but are unable to fully capture changes in attention. Of the six alternative models tested, the two models that implement panel data offer more reliable and significant results, suggesting the type of data and model specification used may play an important role in diagnosing attention changes when compared to various heterogeneity models.</subfield></datafield></record></collection>
|
score |
7.401469 |