Latent local-to-unity models
Autor*in: |
Wang, Xiaohu [verfasserIn] Yu, Jun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
fractionally integrated errors |
---|
Übergeordnetes Werk: |
Enthalten in: Econometric reviews - Philadelphia, Pa. : Taylor & Francis, 1982, 42(2023), 7, Seite 586-611 |
---|---|
Übergeordnetes Werk: |
volume:42 ; year:2023 ; number:7 ; pages:586-611 |
Links: |
---|
DOI / URN: |
10.1080/07474938.2023.2215034 |
---|
Katalog-ID: |
1855028018 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | 1855028018 | ||
003 | DE-627 | ||
005 | 20240122151558.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230809s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/07474938.2023.2215034 |2 doi | |
035 | |a (DE-627)1855028018 | ||
035 | |a (DE-599)KXP1855028018 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Wang, Xiaohu |e verfasserin |0 (DE-588)1234238675 |0 (DE-627)1759094315 |4 aut | |
245 | 1 | 0 | |a Latent local-to-unity models |c Xiaohu Wang and Jun Yu |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
650 | 4 | |a Fractional Brownian motion |7 (dpeaa)DE-206 | |
650 | 4 | |a fractional O-U process |7 (dpeaa)DE-206 | |
650 | 4 | |a fractionally integrated errors |7 (dpeaa)DE-206 | |
650 | 4 | |a local-to-unity Instrumental variable |7 (dpeaa)DE-206 | |
650 | 4 | |a state-space |7 (dpeaa)DE-206 | |
700 | 1 | |a Yu, Jun |e verfasserin |0 (DE-588)137468806 |0 (DE-627)592668770 |0 (DE-576)303786248 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Econometric reviews |d Philadelphia, Pa. : Taylor & Francis, 1982 |g 42(2023), 7, Seite 586-611 |h Online-Ressource |w (DE-627)326061193 |w (DE-600)2041746-9 |w (DE-576)116897554 |x 1532-4168 |7 nnns |
773 | 1 | 8 | |g volume:42 |g year:2023 |g number:7 |g pages:586-611 |
856 | 4 | 0 | |u https://www.tandfonline.com/doi/pdf/10.1080/07474938.2023.2215034 |x Verlag |z lizenzpflichtig |
856 | 4 | 0 | |u https://doi.org/10.1080/07474938.2023.2215034 |x Resolving-System |z lizenzpflichtig |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ILN_26 | ||
912 | |a ISIL_DE-206 | ||
912 | |a SYSFLAG_1 | ||
912 | |a GBV_KXP | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 42 |j 2023 |e 7 |h 586-611 | ||
980 | |2 26 |1 01 |x 0206 |b 4364216526 |y x1z |z 09-08-23 | ||
982 | |2 26 |1 00 |x DE-206 |b The article studies a class of state-space models where the state equation is a local-to-unity process. The parameter of interest is the persistence parameter of the latent process. The large sample theory for the least squares (LS) estimator and an instrumental variable (IV) estimator of the persistent parameter in the autoregressive (AR) representation of the model is developed under two sets of conditions. In the first set of conditions, the measurement error is independent and identically distributed, and the error term in the state equation is stationary and fractionally integrated with memory parameter d∈(−0.5,0.5). For both estimators, the convergence rate and the asymptotic distribution crucially depend on d. The LS estimator has a severe downward bias, which is aggravated even more by the measurement error when d≤0. The IV estimator eliminates the effects of the measurement error and reduces the bias. In the second set of conditions, the measurement error is independent but not necessarily identically distributed, and the error term in the state equation is strongly mixing. In this case, the IV estimator still leads to a smaller bias than the LS estimator. Special cases of our models and results in relation to those in the literature are discussed. |
author_variant |
x w xw j y jy |
---|---|
matchkey_str |
article:15324168:2023----::aetoatuiy |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1080/07474938.2023.2215034 doi (DE-627)1855028018 (DE-599)KXP1855028018 DE-627 ger DE-627 rda eng Wang, Xiaohu verfasserin (DE-588)1234238675 (DE-627)1759094315 aut Latent local-to-unity models Xiaohu Wang and Jun Yu 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fractional Brownian motion (dpeaa)DE-206 fractional O-U process (dpeaa)DE-206 fractionally integrated errors (dpeaa)DE-206 local-to-unity Instrumental variable (dpeaa)DE-206 state-space (dpeaa)DE-206 Yu, Jun verfasserin (DE-588)137468806 (DE-627)592668770 (DE-576)303786248 aut Enthalten in Econometric reviews Philadelphia, Pa. : Taylor & Francis, 1982 42(2023), 7, Seite 586-611 Online-Ressource (DE-627)326061193 (DE-600)2041746-9 (DE-576)116897554 1532-4168 nnns volume:42 year:2023 number:7 pages:586-611 https://www.tandfonline.com/doi/pdf/10.1080/07474938.2023.2215034 Verlag lizenzpflichtig https://doi.org/10.1080/07474938.2023.2215034 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_152 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2023 7 586-611 26 01 0206 4364216526 x1z 09-08-23 26 00 DE-206 The article studies a class of state-space models where the state equation is a local-to-unity process. The parameter of interest is the persistence parameter of the latent process. The large sample theory for the least squares (LS) estimator and an instrumental variable (IV) estimator of the persistent parameter in the autoregressive (AR) representation of the model is developed under two sets of conditions. In the first set of conditions, the measurement error is independent and identically distributed, and the error term in the state equation is stationary and fractionally integrated with memory parameter d∈(−0.5,0.5). For both estimators, the convergence rate and the asymptotic distribution crucially depend on d. The LS estimator has a severe downward bias, which is aggravated even more by the measurement error when d≤0. The IV estimator eliminates the effects of the measurement error and reduces the bias. In the second set of conditions, the measurement error is independent but not necessarily identically distributed, and the error term in the state equation is strongly mixing. In this case, the IV estimator still leads to a smaller bias than the LS estimator. Special cases of our models and results in relation to those in the literature are discussed. |
spelling |
10.1080/07474938.2023.2215034 doi (DE-627)1855028018 (DE-599)KXP1855028018 DE-627 ger DE-627 rda eng Wang, Xiaohu verfasserin (DE-588)1234238675 (DE-627)1759094315 aut Latent local-to-unity models Xiaohu Wang and Jun Yu 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fractional Brownian motion (dpeaa)DE-206 fractional O-U process (dpeaa)DE-206 fractionally integrated errors (dpeaa)DE-206 local-to-unity Instrumental variable (dpeaa)DE-206 state-space (dpeaa)DE-206 Yu, Jun verfasserin (DE-588)137468806 (DE-627)592668770 (DE-576)303786248 aut Enthalten in Econometric reviews Philadelphia, Pa. : Taylor & Francis, 1982 42(2023), 7, Seite 586-611 Online-Ressource (DE-627)326061193 (DE-600)2041746-9 (DE-576)116897554 1532-4168 nnns volume:42 year:2023 number:7 pages:586-611 https://www.tandfonline.com/doi/pdf/10.1080/07474938.2023.2215034 Verlag lizenzpflichtig https://doi.org/10.1080/07474938.2023.2215034 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_152 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2023 7 586-611 26 01 0206 4364216526 x1z 09-08-23 26 00 DE-206 The article studies a class of state-space models where the state equation is a local-to-unity process. The parameter of interest is the persistence parameter of the latent process. The large sample theory for the least squares (LS) estimator and an instrumental variable (IV) estimator of the persistent parameter in the autoregressive (AR) representation of the model is developed under two sets of conditions. In the first set of conditions, the measurement error is independent and identically distributed, and the error term in the state equation is stationary and fractionally integrated with memory parameter d∈(−0.5,0.5). For both estimators, the convergence rate and the asymptotic distribution crucially depend on d. The LS estimator has a severe downward bias, which is aggravated even more by the measurement error when d≤0. The IV estimator eliminates the effects of the measurement error and reduces the bias. In the second set of conditions, the measurement error is independent but not necessarily identically distributed, and the error term in the state equation is strongly mixing. In this case, the IV estimator still leads to a smaller bias than the LS estimator. Special cases of our models and results in relation to those in the literature are discussed. |
allfields_unstemmed |
10.1080/07474938.2023.2215034 doi (DE-627)1855028018 (DE-599)KXP1855028018 DE-627 ger DE-627 rda eng Wang, Xiaohu verfasserin (DE-588)1234238675 (DE-627)1759094315 aut Latent local-to-unity models Xiaohu Wang and Jun Yu 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fractional Brownian motion (dpeaa)DE-206 fractional O-U process (dpeaa)DE-206 fractionally integrated errors (dpeaa)DE-206 local-to-unity Instrumental variable (dpeaa)DE-206 state-space (dpeaa)DE-206 Yu, Jun verfasserin (DE-588)137468806 (DE-627)592668770 (DE-576)303786248 aut Enthalten in Econometric reviews Philadelphia, Pa. : Taylor & Francis, 1982 42(2023), 7, Seite 586-611 Online-Ressource (DE-627)326061193 (DE-600)2041746-9 (DE-576)116897554 1532-4168 nnns volume:42 year:2023 number:7 pages:586-611 https://www.tandfonline.com/doi/pdf/10.1080/07474938.2023.2215034 Verlag lizenzpflichtig https://doi.org/10.1080/07474938.2023.2215034 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_152 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2023 7 586-611 26 01 0206 4364216526 x1z 09-08-23 26 00 DE-206 The article studies a class of state-space models where the state equation is a local-to-unity process. The parameter of interest is the persistence parameter of the latent process. The large sample theory for the least squares (LS) estimator and an instrumental variable (IV) estimator of the persistent parameter in the autoregressive (AR) representation of the model is developed under two sets of conditions. In the first set of conditions, the measurement error is independent and identically distributed, and the error term in the state equation is stationary and fractionally integrated with memory parameter d∈(−0.5,0.5). For both estimators, the convergence rate and the asymptotic distribution crucially depend on d. The LS estimator has a severe downward bias, which is aggravated even more by the measurement error when d≤0. The IV estimator eliminates the effects of the measurement error and reduces the bias. In the second set of conditions, the measurement error is independent but not necessarily identically distributed, and the error term in the state equation is strongly mixing. In this case, the IV estimator still leads to a smaller bias than the LS estimator. Special cases of our models and results in relation to those in the literature are discussed. |
allfieldsGer |
10.1080/07474938.2023.2215034 doi (DE-627)1855028018 (DE-599)KXP1855028018 DE-627 ger DE-627 rda eng Wang, Xiaohu verfasserin (DE-588)1234238675 (DE-627)1759094315 aut Latent local-to-unity models Xiaohu Wang and Jun Yu 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fractional Brownian motion (dpeaa)DE-206 fractional O-U process (dpeaa)DE-206 fractionally integrated errors (dpeaa)DE-206 local-to-unity Instrumental variable (dpeaa)DE-206 state-space (dpeaa)DE-206 Yu, Jun verfasserin (DE-588)137468806 (DE-627)592668770 (DE-576)303786248 aut Enthalten in Econometric reviews Philadelphia, Pa. : Taylor & Francis, 1982 42(2023), 7, Seite 586-611 Online-Ressource (DE-627)326061193 (DE-600)2041746-9 (DE-576)116897554 1532-4168 nnns volume:42 year:2023 number:7 pages:586-611 https://www.tandfonline.com/doi/pdf/10.1080/07474938.2023.2215034 Verlag lizenzpflichtig https://doi.org/10.1080/07474938.2023.2215034 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_152 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2023 7 586-611 26 01 0206 4364216526 x1z 09-08-23 26 00 DE-206 The article studies a class of state-space models where the state equation is a local-to-unity process. The parameter of interest is the persistence parameter of the latent process. The large sample theory for the least squares (LS) estimator and an instrumental variable (IV) estimator of the persistent parameter in the autoregressive (AR) representation of the model is developed under two sets of conditions. In the first set of conditions, the measurement error is independent and identically distributed, and the error term in the state equation is stationary and fractionally integrated with memory parameter d∈(−0.5,0.5). For both estimators, the convergence rate and the asymptotic distribution crucially depend on d. The LS estimator has a severe downward bias, which is aggravated even more by the measurement error when d≤0. The IV estimator eliminates the effects of the measurement error and reduces the bias. In the second set of conditions, the measurement error is independent but not necessarily identically distributed, and the error term in the state equation is strongly mixing. In this case, the IV estimator still leads to a smaller bias than the LS estimator. Special cases of our models and results in relation to those in the literature are discussed. |
allfieldsSound |
10.1080/07474938.2023.2215034 doi (DE-627)1855028018 (DE-599)KXP1855028018 DE-627 ger DE-627 rda eng Wang, Xiaohu verfasserin (DE-588)1234238675 (DE-627)1759094315 aut Latent local-to-unity models Xiaohu Wang and Jun Yu 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fractional Brownian motion (dpeaa)DE-206 fractional O-U process (dpeaa)DE-206 fractionally integrated errors (dpeaa)DE-206 local-to-unity Instrumental variable (dpeaa)DE-206 state-space (dpeaa)DE-206 Yu, Jun verfasserin (DE-588)137468806 (DE-627)592668770 (DE-576)303786248 aut Enthalten in Econometric reviews Philadelphia, Pa. : Taylor & Francis, 1982 42(2023), 7, Seite 586-611 Online-Ressource (DE-627)326061193 (DE-600)2041746-9 (DE-576)116897554 1532-4168 nnns volume:42 year:2023 number:7 pages:586-611 https://www.tandfonline.com/doi/pdf/10.1080/07474938.2023.2215034 Verlag lizenzpflichtig https://doi.org/10.1080/07474938.2023.2215034 Resolving-System lizenzpflichtig GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_152 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2023 7 586-611 26 01 0206 4364216526 x1z 09-08-23 26 00 DE-206 The article studies a class of state-space models where the state equation is a local-to-unity process. The parameter of interest is the persistence parameter of the latent process. The large sample theory for the least squares (LS) estimator and an instrumental variable (IV) estimator of the persistent parameter in the autoregressive (AR) representation of the model is developed under two sets of conditions. In the first set of conditions, the measurement error is independent and identically distributed, and the error term in the state equation is stationary and fractionally integrated with memory parameter d∈(−0.5,0.5). For both estimators, the convergence rate and the asymptotic distribution crucially depend on d. The LS estimator has a severe downward bias, which is aggravated even more by the measurement error when d≤0. The IV estimator eliminates the effects of the measurement error and reduces the bias. In the second set of conditions, the measurement error is independent but not necessarily identically distributed, and the error term in the state equation is strongly mixing. In this case, the IV estimator still leads to a smaller bias than the LS estimator. Special cases of our models and results in relation to those in the literature are discussed. |
language |
English |
source |
Enthalten in Econometric reviews 42(2023), 7, Seite 586-611 volume:42 year:2023 number:7 pages:586-611 |
sourceStr |
Enthalten in Econometric reviews 42(2023), 7, Seite 586-611 volume:42 year:2023 number:7 pages:586-611 |
format_phy_str_mv |
Article |
building |
26:1 |
institution |
findex.gbv.de |
selectbib_iln_str_mv |
26@1z |
topic_facet |
Fractional Brownian motion fractional O-U process fractionally integrated errors local-to-unity Instrumental variable state-space |
sw_local_iln_str_mv |
26: DE-206: |
isfreeaccess_bool |
false |
container_title |
Econometric reviews |
authorswithroles_txt_mv |
Wang, Xiaohu @@aut@@ Yu, Jun @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
326061193 |
id |
1855028018 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">1855028018</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240122151558.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230809s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/07474938.2023.2215034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1855028018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1855028018</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Xiaohu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1234238675</subfield><subfield code="0">(DE-627)1759094315</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Latent local-to-unity models</subfield><subfield code="c">Xiaohu Wang and Jun Yu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional Brownian motion</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional O-U process</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractionally integrated errors</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">local-to-unity Instrumental variable</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">state-space</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)137468806</subfield><subfield code="0">(DE-627)592668770</subfield><subfield code="0">(DE-576)303786248</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Econometric reviews</subfield><subfield code="d">Philadelphia, Pa. : Taylor & Francis, 1982</subfield><subfield code="g">42(2023), 7, Seite 586-611</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)326061193</subfield><subfield code="w">(DE-600)2041746-9</subfield><subfield code="w">(DE-576)116897554</subfield><subfield code="x">1532-4168</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:586-611</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tandfonline.com/doi/pdf/10.1080/07474938.2023.2215034</subfield><subfield code="x">Verlag</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/07474938.2023.2215034</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2023</subfield><subfield code="e">7</subfield><subfield code="h">586-611</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">01</subfield><subfield code="x">0206</subfield><subfield code="b">4364216526</subfield><subfield code="y">x1z</subfield><subfield code="z">09-08-23</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="b">The article studies a class of state-space models where the state equation is a local-to-unity process. The parameter of interest is the persistence parameter of the latent process. The large sample theory for the least squares (LS) estimator and an instrumental variable (IV) estimator of the persistent parameter in the autoregressive (AR) representation of the model is developed under two sets of conditions. In the first set of conditions, the measurement error is independent and identically distributed, and the error term in the state equation is stationary and fractionally integrated with memory parameter d∈(−0.5,0.5). For both estimators, the convergence rate and the asymptotic distribution crucially depend on d. The LS estimator has a severe downward bias, which is aggravated even more by the measurement error when d≤0. The IV estimator eliminates the effects of the measurement error and reduces the bias. In the second set of conditions, the measurement error is independent but not necessarily identically distributed, and the error term in the state equation is strongly mixing. In this case, the IV estimator still leads to a smaller bias than the LS estimator. Special cases of our models and results in relation to those in the literature are discussed.</subfield></datafield></record></collection>
|
author |
Wang, Xiaohu |
spellingShingle |
Wang, Xiaohu misc Fractional Brownian motion misc fractional O-U process misc fractionally integrated errors misc local-to-unity Instrumental variable misc state-space Latent local-to-unity models |
authorStr |
Wang, Xiaohu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326061193 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
typewithnormlink_str_mv |
DifferentiatedPerson@(DE-588)1234238675 Person@(DE-588)1234238675 DifferentiatedPerson@(DE-588)137468806 Person@(DE-588)137468806 |
collection |
KXP GVK SWB |
remote_str |
true |
last_changed_iln_str_mv |
26@09-08-23 |
illustrated |
Not Illustrated |
issn |
1532-4168 |
topic_title |
26 00 DE-206 The article studies a class of state-space models where the state equation is a local-to-unity process. The parameter of interest is the persistence parameter of the latent process. The large sample theory for the least squares (LS) estimator and an instrumental variable (IV) estimator of the persistent parameter in the autoregressive (AR) representation of the model is developed under two sets of conditions. In the first set of conditions, the measurement error is independent and identically distributed, and the error term in the state equation is stationary and fractionally integrated with memory parameter d∈(−0.5,0.5). For both estimators, the convergence rate and the asymptotic distribution crucially depend on d. The LS estimator has a severe downward bias, which is aggravated even more by the measurement error when d≤0. The IV estimator eliminates the effects of the measurement error and reduces the bias. In the second set of conditions, the measurement error is independent but not necessarily identically distributed, and the error term in the state equation is strongly mixing. In this case, the IV estimator still leads to a smaller bias than the LS estimator. Special cases of our models and results in relation to those in the literature are discussed Latent local-to-unity models Xiaohu Wang and Jun Yu Fractional Brownian motion (dpeaa)DE-206 fractional O-U process (dpeaa)DE-206 fractionally integrated errors (dpeaa)DE-206 local-to-unity Instrumental variable (dpeaa)DE-206 state-space (dpeaa)DE-206 |
topic |
misc Fractional Brownian motion misc fractional O-U process misc fractionally integrated errors misc local-to-unity Instrumental variable misc state-space |
topic_unstemmed |
misc Fractional Brownian motion misc fractional O-U process misc fractionally integrated errors misc local-to-unity Instrumental variable misc state-space |
topic_browse |
misc Fractional Brownian motion misc fractional O-U process misc fractionally integrated errors misc local-to-unity Instrumental variable misc state-space |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Econometric reviews |
normlinkwithtype_str_mv |
(DE-588)1234238675@DifferentiatedPerson (DE-588)1234238675@Person (DE-588)137468806@DifferentiatedPerson (DE-588)137468806@Person |
hierarchy_parent_id |
326061193 |
hierarchy_top_title |
Econometric reviews |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)326061193 (DE-600)2041746-9 (DE-576)116897554 |
normlinkwithrole_str_mv |
(DE-588)1234238675@@aut@@ (DE-588)137468806@@aut@@ |
title |
Latent local-to-unity models |
ctrlnum |
(DE-627)1855028018 (DE-599)KXP1855028018 |
title_full |
Latent local-to-unity models Xiaohu Wang and Jun Yu |
author_sort |
Wang, Xiaohu |
journal |
Econometric reviews |
journalStr |
Econometric reviews |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
586 |
author_browse |
Wang, Xiaohu Yu, Jun |
selectkey |
26:x |
container_volume |
42 |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Xiaohu |
doi_str_mv |
10.1080/07474938.2023.2215034 |
normlink |
1234238675 1759094315 137468806 592668770 303786248 |
normlink_prefix_str_mv |
(DE-588)1234238675 (DE-627)1759094315 (DE-588)137468806 (DE-627)592668770 (DE-576)303786248 |
author2-role |
verfasserin |
title_sort |
latent local-to-unity models |
title_auth |
Latent local-to-unity models |
collection_details |
GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_152 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
7 |
title_short |
Latent local-to-unity models |
url |
https://www.tandfonline.com/doi/pdf/10.1080/07474938.2023.2215034 https://doi.org/10.1080/07474938.2023.2215034 |
ausleihindikator_str_mv |
26 |
rolewithnormlink_str_mv |
@@aut@@(DE-588)1234238675 @@aut@@(DE-588)137468806 |
remote_bool |
true |
author2 |
Yu, Jun |
author2Str |
Yu, Jun |
ppnlink |
326061193 |
GND_str_mv |
Xiaohu, Wang Wang Xiaohu Wang, X. Wang, Xiaohu Yu Jun Jun, Yu Yu, J. Yu, Jun |
GND_txt_mv |
Xiaohu, Wang Wang Xiaohu Wang, X. Wang, Xiaohu Yu Jun Jun, Yu Yu, J. Yu, Jun |
GND_txtF_mv |
Xiaohu, Wang Wang Xiaohu Wang, X. Wang, Xiaohu Yu Jun Jun, Yu Yu, J. Yu, Jun |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1080/07474938.2023.2215034 |
up_date |
2024-07-04T19:24:41.438Z |
_version_ |
1803677683093078016 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">1855028018</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240122151558.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230809s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/07474938.2023.2215034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1855028018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1855028018</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Xiaohu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1234238675</subfield><subfield code="0">(DE-627)1759094315</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Latent local-to-unity models</subfield><subfield code="c">Xiaohu Wang and Jun Yu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional Brownian motion</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional O-U process</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractionally integrated errors</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">local-to-unity Instrumental variable</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">state-space</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)137468806</subfield><subfield code="0">(DE-627)592668770</subfield><subfield code="0">(DE-576)303786248</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Econometric reviews</subfield><subfield code="d">Philadelphia, Pa. : Taylor & Francis, 1982</subfield><subfield code="g">42(2023), 7, Seite 586-611</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)326061193</subfield><subfield code="w">(DE-600)2041746-9</subfield><subfield code="w">(DE-576)116897554</subfield><subfield code="x">1532-4168</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:586-611</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tandfonline.com/doi/pdf/10.1080/07474938.2023.2215034</subfield><subfield code="x">Verlag</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/07474938.2023.2215034</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2023</subfield><subfield code="e">7</subfield><subfield code="h">586-611</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">01</subfield><subfield code="x">0206</subfield><subfield code="b">4364216526</subfield><subfield code="y">x1z</subfield><subfield code="z">09-08-23</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="b">The article studies a class of state-space models where the state equation is a local-to-unity process. The parameter of interest is the persistence parameter of the latent process. The large sample theory for the least squares (LS) estimator and an instrumental variable (IV) estimator of the persistent parameter in the autoregressive (AR) representation of the model is developed under two sets of conditions. In the first set of conditions, the measurement error is independent and identically distributed, and the error term in the state equation is stationary and fractionally integrated with memory parameter d∈(−0.5,0.5). For both estimators, the convergence rate and the asymptotic distribution crucially depend on d. The LS estimator has a severe downward bias, which is aggravated even more by the measurement error when d≤0. The IV estimator eliminates the effects of the measurement error and reduces the bias. In the second set of conditions, the measurement error is independent but not necessarily identically distributed, and the error term in the state equation is strongly mixing. In this case, the IV estimator still leads to a smaller bias than the LS estimator. Special cases of our models and results in relation to those in the literature are discussed.</subfield></datafield></record></collection>
|
score |
7.401991 |