A hybrid machine learning approach to hotel sales rank prediction
Autor*in: |
Srivastava, Praveen Ranjan [verfasserIn] Eachempati, Prajwal [verfasserIn] Charles, Vincent [verfasserIn] Rana, Nripendra P. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of the Operational Research Society - Operational Research Society, London : Taylor and Francis, 1978, 74(2023), 6, Seite 1407-1423 |
---|---|
Übergeordnetes Werk: |
volume:74 ; year:2023 ; number:6 ; pages:1407-1423 |
Links: |
---|
DOI / URN: |
10.1080/01605682.2022.2096498 |
---|
Katalog-ID: |
1858782082 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | 1858782082 | ||
003 | DE-627 | ||
005 | 20240122145548.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230905s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/01605682.2022.2096498 |2 doi | |
035 | |a (DE-627)1858782082 | ||
035 | |a (DE-599)KXP1858782082 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Srivastava, Praveen Ranjan |e verfasserin |0 (DE-588)1140075780 |0 (DE-627)898200490 |0 (DE-576)493641688 |4 aut | |
245 | 1 | 2 | |a A hybrid machine learning approach to hotel sales rank prediction |c Praveen Ranjan Srivastava, Prajwal Eachempati, Vincent Charles, Nripendra P. Rana |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
650 | 4 | |a Sentiment analysis |7 (dpeaa)DE-206 | |
650 | 4 | |a ANN |7 (dpeaa)DE-206 | |
650 | 4 | |a predictive model |7 (dpeaa)DE-206 | |
650 | 4 | |a regression analysis |7 (dpeaa)DE-206 | |
650 | 4 | |a sales rank prediction |7 (dpeaa)DE-206 | |
700 | 1 | |a Eachempati, Prajwal |e verfasserin |4 aut | |
700 | 1 | |a Charles, Vincent |e verfasserin |0 (DE-588)1051525624 |0 (DE-627)786386398 |0 (DE-576)406609551 |4 aut | |
700 | 1 | |a Rana, Nripendra P. |e verfasserin |0 (DE-588)1175514764 |0 (DE-627)1046499920 |0 (DE-576)516284223 |4 aut | |
773 | 0 | 8 | |i Enthalten in |a Operational Research Society |t Journal of the Operational Research Society |d London : Taylor and Francis, 1978 |g 74(2023), 6, Seite 1407-1423 |h Online-Ressource |w (DE-627)320465098 |w (DE-600)2007775-0 |w (DE-576)103939180 |x 1476-9360 |7 nnns |
773 | 1 | 8 | |g volume:74 |g year:2023 |g number:6 |g pages:1407-1423 |
856 | 4 | 0 | |u https://www.tandfonline.com/doi/pdf/10.1080/01605682.2022.2096498 |x Verlag |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1080/01605682.2022.2096498 |x Resolving-System |z kostenfrei |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ILN_26 | ||
912 | |a ISIL_DE-206 | ||
912 | |a SYSFLAG_1 | ||
912 | |a GBV_KXP | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_2935 | ||
912 | |a GBV_ILN_2940 | ||
912 | |a GBV_ILN_2949 | ||
912 | |a GBV_ILN_2950 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4346 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
912 | |a GBV_ILN_2403 | ||
912 | |a GBV_ILN_2403 | ||
912 | |a ISIL_DE-LFER | ||
951 | |a AR | ||
952 | |d 74 |j 2023 |e 6 |h 1407-1423 | ||
980 | |2 26 |1 01 |x 0206 |b 4372776209 |y x1z |z 05-09-23 | ||
980 | |2 2403 |1 01 |x DE-LFER |b 4377734857 |c 00 |f --%%-- |d --%%-- |e n |j --%%-- |y l01 |z 19-09-23 | ||
981 | |2 2403 |1 01 |x DE-LFER |r https://doi.org/10.1080/01605682.2022.2096498 | ||
982 | |2 26 |1 00 |x DE-206 |b One of the challenges that the hospitality and tourism industry faces is determining the best-rated and ideal hotels for people with customized preferences. Users belong to various demographic groups, and the factors they consider when selecting a hotel depend on their priorities at the time. Therefore, to provide appropriate recommendations tailored to the individual preferences of users, forecasting customer demand is required, for which hotel sales rank prediction models are to be developed. In this regard, the present paper aims to develop a customized hotel recommendation model for sales rank prediction that considers factors like distance from a strategic location, online user ratings, word-of-mouth rating, hotel tariff, and customer reviews, using the aggregated data set of Indian hotels from trivago.com. Results show that the Artificial Neural Network algorithm predicts sales rank better than the Random Forest and Gradient Boosting algorithms. Implications for practice are provided. |
author_variant |
p r s pr prs p e pe v c vc n p r np npr |
---|---|
matchkey_str |
article:14769360:2023----::hbimcieerigprahooesls |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1080/01605682.2022.2096498 doi (DE-627)1858782082 (DE-599)KXP1858782082 DE-627 ger DE-627 rda eng Srivastava, Praveen Ranjan verfasserin (DE-588)1140075780 (DE-627)898200490 (DE-576)493641688 aut A hybrid machine learning approach to hotel sales rank prediction Praveen Ranjan Srivastava, Prajwal Eachempati, Vincent Charles, Nripendra P. Rana 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sentiment analysis (dpeaa)DE-206 ANN (dpeaa)DE-206 predictive model (dpeaa)DE-206 regression analysis (dpeaa)DE-206 sales rank prediction (dpeaa)DE-206 Eachempati, Prajwal verfasserin aut Charles, Vincent verfasserin (DE-588)1051525624 (DE-627)786386398 (DE-576)406609551 aut Rana, Nripendra P. verfasserin (DE-588)1175514764 (DE-627)1046499920 (DE-576)516284223 aut Enthalten in Operational Research Society Journal of the Operational Research Society London : Taylor and Francis, 1978 74(2023), 6, Seite 1407-1423 Online-Ressource (DE-627)320465098 (DE-600)2007775-0 (DE-576)103939180 1476-9360 nnns volume:74 year:2023 number:6 pages:1407-1423 https://www.tandfonline.com/doi/pdf/10.1080/01605682.2022.2096498 Verlag kostenfrei https://doi.org/10.1080/01605682.2022.2096498 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_31 GBV_ILN_63 GBV_ILN_70 GBV_ILN_100 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_374 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2107 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_2935 GBV_ILN_2940 GBV_ILN_2949 GBV_ILN_2950 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4346 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 74 2023 6 1407-1423 26 01 0206 4372776209 x1z 05-09-23 2403 01 DE-LFER 4377734857 00 --%%-- --%%-- n --%%-- l01 19-09-23 2403 01 DE-LFER https://doi.org/10.1080/01605682.2022.2096498 26 00 DE-206 One of the challenges that the hospitality and tourism industry faces is determining the best-rated and ideal hotels for people with customized preferences. Users belong to various demographic groups, and the factors they consider when selecting a hotel depend on their priorities at the time. Therefore, to provide appropriate recommendations tailored to the individual preferences of users, forecasting customer demand is required, for which hotel sales rank prediction models are to be developed. In this regard, the present paper aims to develop a customized hotel recommendation model for sales rank prediction that considers factors like distance from a strategic location, online user ratings, word-of-mouth rating, hotel tariff, and customer reviews, using the aggregated data set of Indian hotels from trivago.com. Results show that the Artificial Neural Network algorithm predicts sales rank better than the Random Forest and Gradient Boosting algorithms. Implications for practice are provided. |
spelling |
10.1080/01605682.2022.2096498 doi (DE-627)1858782082 (DE-599)KXP1858782082 DE-627 ger DE-627 rda eng Srivastava, Praveen Ranjan verfasserin (DE-588)1140075780 (DE-627)898200490 (DE-576)493641688 aut A hybrid machine learning approach to hotel sales rank prediction Praveen Ranjan Srivastava, Prajwal Eachempati, Vincent Charles, Nripendra P. Rana 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sentiment analysis (dpeaa)DE-206 ANN (dpeaa)DE-206 predictive model (dpeaa)DE-206 regression analysis (dpeaa)DE-206 sales rank prediction (dpeaa)DE-206 Eachempati, Prajwal verfasserin aut Charles, Vincent verfasserin (DE-588)1051525624 (DE-627)786386398 (DE-576)406609551 aut Rana, Nripendra P. verfasserin (DE-588)1175514764 (DE-627)1046499920 (DE-576)516284223 aut Enthalten in Operational Research Society Journal of the Operational Research Society London : Taylor and Francis, 1978 74(2023), 6, Seite 1407-1423 Online-Ressource (DE-627)320465098 (DE-600)2007775-0 (DE-576)103939180 1476-9360 nnns volume:74 year:2023 number:6 pages:1407-1423 https://www.tandfonline.com/doi/pdf/10.1080/01605682.2022.2096498 Verlag kostenfrei https://doi.org/10.1080/01605682.2022.2096498 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_31 GBV_ILN_63 GBV_ILN_70 GBV_ILN_100 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_374 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2107 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_2935 GBV_ILN_2940 GBV_ILN_2949 GBV_ILN_2950 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4346 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 74 2023 6 1407-1423 26 01 0206 4372776209 x1z 05-09-23 2403 01 DE-LFER 4377734857 00 --%%-- --%%-- n --%%-- l01 19-09-23 2403 01 DE-LFER https://doi.org/10.1080/01605682.2022.2096498 26 00 DE-206 One of the challenges that the hospitality and tourism industry faces is determining the best-rated and ideal hotels for people with customized preferences. Users belong to various demographic groups, and the factors they consider when selecting a hotel depend on their priorities at the time. Therefore, to provide appropriate recommendations tailored to the individual preferences of users, forecasting customer demand is required, for which hotel sales rank prediction models are to be developed. In this regard, the present paper aims to develop a customized hotel recommendation model for sales rank prediction that considers factors like distance from a strategic location, online user ratings, word-of-mouth rating, hotel tariff, and customer reviews, using the aggregated data set of Indian hotels from trivago.com. Results show that the Artificial Neural Network algorithm predicts sales rank better than the Random Forest and Gradient Boosting algorithms. Implications for practice are provided. |
allfields_unstemmed |
10.1080/01605682.2022.2096498 doi (DE-627)1858782082 (DE-599)KXP1858782082 DE-627 ger DE-627 rda eng Srivastava, Praveen Ranjan verfasserin (DE-588)1140075780 (DE-627)898200490 (DE-576)493641688 aut A hybrid machine learning approach to hotel sales rank prediction Praveen Ranjan Srivastava, Prajwal Eachempati, Vincent Charles, Nripendra P. Rana 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sentiment analysis (dpeaa)DE-206 ANN (dpeaa)DE-206 predictive model (dpeaa)DE-206 regression analysis (dpeaa)DE-206 sales rank prediction (dpeaa)DE-206 Eachempati, Prajwal verfasserin aut Charles, Vincent verfasserin (DE-588)1051525624 (DE-627)786386398 (DE-576)406609551 aut Rana, Nripendra P. verfasserin (DE-588)1175514764 (DE-627)1046499920 (DE-576)516284223 aut Enthalten in Operational Research Society Journal of the Operational Research Society London : Taylor and Francis, 1978 74(2023), 6, Seite 1407-1423 Online-Ressource (DE-627)320465098 (DE-600)2007775-0 (DE-576)103939180 1476-9360 nnns volume:74 year:2023 number:6 pages:1407-1423 https://www.tandfonline.com/doi/pdf/10.1080/01605682.2022.2096498 Verlag kostenfrei https://doi.org/10.1080/01605682.2022.2096498 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_31 GBV_ILN_63 GBV_ILN_70 GBV_ILN_100 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_374 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2107 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_2935 GBV_ILN_2940 GBV_ILN_2949 GBV_ILN_2950 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4346 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 74 2023 6 1407-1423 26 01 0206 4372776209 x1z 05-09-23 2403 01 DE-LFER 4377734857 00 --%%-- --%%-- n --%%-- l01 19-09-23 2403 01 DE-LFER https://doi.org/10.1080/01605682.2022.2096498 26 00 DE-206 One of the challenges that the hospitality and tourism industry faces is determining the best-rated and ideal hotels for people with customized preferences. Users belong to various demographic groups, and the factors they consider when selecting a hotel depend on their priorities at the time. Therefore, to provide appropriate recommendations tailored to the individual preferences of users, forecasting customer demand is required, for which hotel sales rank prediction models are to be developed. In this regard, the present paper aims to develop a customized hotel recommendation model for sales rank prediction that considers factors like distance from a strategic location, online user ratings, word-of-mouth rating, hotel tariff, and customer reviews, using the aggregated data set of Indian hotels from trivago.com. Results show that the Artificial Neural Network algorithm predicts sales rank better than the Random Forest and Gradient Boosting algorithms. Implications for practice are provided. |
allfieldsGer |
10.1080/01605682.2022.2096498 doi (DE-627)1858782082 (DE-599)KXP1858782082 DE-627 ger DE-627 rda eng Srivastava, Praveen Ranjan verfasserin (DE-588)1140075780 (DE-627)898200490 (DE-576)493641688 aut A hybrid machine learning approach to hotel sales rank prediction Praveen Ranjan Srivastava, Prajwal Eachempati, Vincent Charles, Nripendra P. Rana 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sentiment analysis (dpeaa)DE-206 ANN (dpeaa)DE-206 predictive model (dpeaa)DE-206 regression analysis (dpeaa)DE-206 sales rank prediction (dpeaa)DE-206 Eachempati, Prajwal verfasserin aut Charles, Vincent verfasserin (DE-588)1051525624 (DE-627)786386398 (DE-576)406609551 aut Rana, Nripendra P. verfasserin (DE-588)1175514764 (DE-627)1046499920 (DE-576)516284223 aut Enthalten in Operational Research Society Journal of the Operational Research Society London : Taylor and Francis, 1978 74(2023), 6, Seite 1407-1423 Online-Ressource (DE-627)320465098 (DE-600)2007775-0 (DE-576)103939180 1476-9360 nnns volume:74 year:2023 number:6 pages:1407-1423 https://www.tandfonline.com/doi/pdf/10.1080/01605682.2022.2096498 Verlag kostenfrei https://doi.org/10.1080/01605682.2022.2096498 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_31 GBV_ILN_63 GBV_ILN_70 GBV_ILN_100 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_374 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2107 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_2935 GBV_ILN_2940 GBV_ILN_2949 GBV_ILN_2950 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4346 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 74 2023 6 1407-1423 26 01 0206 4372776209 x1z 05-09-23 2403 01 DE-LFER 4377734857 00 --%%-- --%%-- n --%%-- l01 19-09-23 2403 01 DE-LFER https://doi.org/10.1080/01605682.2022.2096498 26 00 DE-206 One of the challenges that the hospitality and tourism industry faces is determining the best-rated and ideal hotels for people with customized preferences. Users belong to various demographic groups, and the factors they consider when selecting a hotel depend on their priorities at the time. Therefore, to provide appropriate recommendations tailored to the individual preferences of users, forecasting customer demand is required, for which hotel sales rank prediction models are to be developed. In this regard, the present paper aims to develop a customized hotel recommendation model for sales rank prediction that considers factors like distance from a strategic location, online user ratings, word-of-mouth rating, hotel tariff, and customer reviews, using the aggregated data set of Indian hotels from trivago.com. Results show that the Artificial Neural Network algorithm predicts sales rank better than the Random Forest and Gradient Boosting algorithms. Implications for practice are provided. |
allfieldsSound |
10.1080/01605682.2022.2096498 doi (DE-627)1858782082 (DE-599)KXP1858782082 DE-627 ger DE-627 rda eng Srivastava, Praveen Ranjan verfasserin (DE-588)1140075780 (DE-627)898200490 (DE-576)493641688 aut A hybrid machine learning approach to hotel sales rank prediction Praveen Ranjan Srivastava, Prajwal Eachempati, Vincent Charles, Nripendra P. Rana 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sentiment analysis (dpeaa)DE-206 ANN (dpeaa)DE-206 predictive model (dpeaa)DE-206 regression analysis (dpeaa)DE-206 sales rank prediction (dpeaa)DE-206 Eachempati, Prajwal verfasserin aut Charles, Vincent verfasserin (DE-588)1051525624 (DE-627)786386398 (DE-576)406609551 aut Rana, Nripendra P. verfasserin (DE-588)1175514764 (DE-627)1046499920 (DE-576)516284223 aut Enthalten in Operational Research Society Journal of the Operational Research Society London : Taylor and Francis, 1978 74(2023), 6, Seite 1407-1423 Online-Ressource (DE-627)320465098 (DE-600)2007775-0 (DE-576)103939180 1476-9360 nnns volume:74 year:2023 number:6 pages:1407-1423 https://www.tandfonline.com/doi/pdf/10.1080/01605682.2022.2096498 Verlag kostenfrei https://doi.org/10.1080/01605682.2022.2096498 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_31 GBV_ILN_63 GBV_ILN_70 GBV_ILN_100 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_374 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2107 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_2935 GBV_ILN_2940 GBV_ILN_2949 GBV_ILN_2950 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4346 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 74 2023 6 1407-1423 26 01 0206 4372776209 x1z 05-09-23 2403 01 DE-LFER 4377734857 00 --%%-- --%%-- n --%%-- l01 19-09-23 2403 01 DE-LFER https://doi.org/10.1080/01605682.2022.2096498 26 00 DE-206 One of the challenges that the hospitality and tourism industry faces is determining the best-rated and ideal hotels for people with customized preferences. Users belong to various demographic groups, and the factors they consider when selecting a hotel depend on their priorities at the time. Therefore, to provide appropriate recommendations tailored to the individual preferences of users, forecasting customer demand is required, for which hotel sales rank prediction models are to be developed. In this regard, the present paper aims to develop a customized hotel recommendation model for sales rank prediction that considers factors like distance from a strategic location, online user ratings, word-of-mouth rating, hotel tariff, and customer reviews, using the aggregated data set of Indian hotels from trivago.com. Results show that the Artificial Neural Network algorithm predicts sales rank better than the Random Forest and Gradient Boosting algorithms. Implications for practice are provided. |
language |
English |
source |
Enthalten in Journal of the Operational Research Society 74(2023), 6, Seite 1407-1423 volume:74 year:2023 number:6 pages:1407-1423 |
sourceStr |
Enthalten in Journal of the Operational Research Society 74(2023), 6, Seite 1407-1423 volume:74 year:2023 number:6 pages:1407-1423 |
format_phy_str_mv |
Article |
building |
26:1 2403:0 |
institution |
findex.gbv.de |
selectbib_iln_str_mv |
26@1z 2403@01 |
topic_facet |
Sentiment analysis ANN predictive model regression analysis sales rank prediction |
sw_local_iln_str_mv |
26: DE-206: |
isfreeaccess_bool |
true |
container_title |
Journal of the Operational Research Society |
authorswithroles_txt_mv |
Srivastava, Praveen Ranjan @@aut@@ Eachempati, Prajwal @@aut@@ Charles, Vincent @@aut@@ Rana, Nripendra P. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320465098 |
id |
1858782082 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">1858782082</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240122145548.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230905s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/01605682.2022.2096498</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1858782082</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1858782082</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Srivastava, Praveen Ranjan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1140075780</subfield><subfield code="0">(DE-627)898200490</subfield><subfield code="0">(DE-576)493641688</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A hybrid machine learning approach to hotel sales rank prediction</subfield><subfield code="c">Praveen Ranjan Srivastava, Prajwal Eachempati, Vincent Charles, Nripendra P. Rana</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentiment analysis</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ANN</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">predictive model</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regression analysis</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sales rank prediction</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eachempati, Prajwal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Charles, Vincent</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1051525624</subfield><subfield code="0">(DE-627)786386398</subfield><subfield code="0">(DE-576)406609551</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rana, Nripendra P.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1175514764</subfield><subfield code="0">(DE-627)1046499920</subfield><subfield code="0">(DE-576)516284223</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Operational Research Society</subfield><subfield code="t">Journal of the Operational Research Society</subfield><subfield code="d">London : Taylor and Francis, 1978</subfield><subfield code="g">74(2023), 6, Seite 1407-1423</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320465098</subfield><subfield code="w">(DE-600)2007775-0</subfield><subfield code="w">(DE-576)103939180</subfield><subfield code="x">1476-9360</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:1407-1423</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tandfonline.com/doi/pdf/10.1080/01605682.2022.2096498</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/01605682.2022.2096498</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2935</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2940</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2949</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2950</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4346</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2403</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2403</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-LFER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield><subfield code="j">2023</subfield><subfield code="e">6</subfield><subfield code="h">1407-1423</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">01</subfield><subfield code="x">0206</subfield><subfield code="b">4372776209</subfield><subfield code="y">x1z</subfield><subfield code="z">05-09-23</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="b">4377734857</subfield><subfield code="c">00</subfield><subfield code="f">--%%--</subfield><subfield code="d">--%%--</subfield><subfield code="e">n</subfield><subfield code="j">--%%--</subfield><subfield code="y">l01</subfield><subfield code="z">19-09-23</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="r">https://doi.org/10.1080/01605682.2022.2096498</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="b">One of the challenges that the hospitality and tourism industry faces is determining the best-rated and ideal hotels for people with customized preferences. Users belong to various demographic groups, and the factors they consider when selecting a hotel depend on their priorities at the time. Therefore, to provide appropriate recommendations tailored to the individual preferences of users, forecasting customer demand is required, for which hotel sales rank prediction models are to be developed. In this regard, the present paper aims to develop a customized hotel recommendation model for sales rank prediction that considers factors like distance from a strategic location, online user ratings, word-of-mouth rating, hotel tariff, and customer reviews, using the aggregated data set of Indian hotels from trivago.com. Results show that the Artificial Neural Network algorithm predicts sales rank better than the Random Forest and Gradient Boosting algorithms. Implications for practice are provided.</subfield></datafield></record></collection>
|
standort_str_mv |
--%%-- |
standort_iln_str_mv |
2403:--%%-- DE-LFER:--%%-- |
author |
Srivastava, Praveen Ranjan |
spellingShingle |
Srivastava, Praveen Ranjan misc Sentiment analysis misc ANN misc predictive model misc regression analysis misc sales rank prediction A hybrid machine learning approach to hotel sales rank prediction |
authorStr |
Srivastava, Praveen Ranjan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320465098 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
typewithnormlink_str_mv |
Person@(DE-588)1140075780 DifferentiatedPerson@(DE-588)1140075780 DifferentiatedPerson@(DE-588)1051525624 Person@(DE-588)1051525624 DifferentiatedPerson@(DE-588)1175514764 Person@(DE-588)1175514764 |
collection |
KXP GVK SWB |
remote_str |
true |
last_changed_iln_str_mv |
26@05-09-23 2403@19-09-23 |
illustrated |
Not Illustrated |
issn |
1476-9360 |
topic_title |
26 00 DE-206 One of the challenges that the hospitality and tourism industry faces is determining the best-rated and ideal hotels for people with customized preferences. Users belong to various demographic groups, and the factors they consider when selecting a hotel depend on their priorities at the time. Therefore, to provide appropriate recommendations tailored to the individual preferences of users, forecasting customer demand is required, for which hotel sales rank prediction models are to be developed. In this regard, the present paper aims to develop a customized hotel recommendation model for sales rank prediction that considers factors like distance from a strategic location, online user ratings, word-of-mouth rating, hotel tariff, and customer reviews, using the aggregated data set of Indian hotels from trivago.com. Results show that the Artificial Neural Network algorithm predicts sales rank better than the Random Forest and Gradient Boosting algorithms. Implications for practice are provided A hybrid machine learning approach to hotel sales rank prediction Praveen Ranjan Srivastava, Prajwal Eachempati, Vincent Charles, Nripendra P. Rana Sentiment analysis (dpeaa)DE-206 ANN (dpeaa)DE-206 predictive model (dpeaa)DE-206 regression analysis (dpeaa)DE-206 sales rank prediction (dpeaa)DE-206 |
topic |
misc Sentiment analysis misc ANN misc predictive model misc regression analysis misc sales rank prediction |
topic_unstemmed |
misc Sentiment analysis misc ANN misc predictive model misc regression analysis misc sales rank prediction |
topic_browse |
misc Sentiment analysis misc ANN misc predictive model misc regression analysis misc sales rank prediction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
standort_txtP_mv |
--%%-- |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of the Operational Research Society |
normlinkwithtype_str_mv |
(DE-588)1140075780@Person (DE-588)1140075780@DifferentiatedPerson (DE-588)1051525624@DifferentiatedPerson (DE-588)1051525624@Person (DE-588)1175514764@DifferentiatedPerson (DE-588)1175514764@Person |
hierarchy_parent_id |
320465098 |
signature |
--%%-- |
signature_str_mv |
--%%-- |
hierarchy_top_title |
Journal of the Operational Research Society |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320465098 (DE-600)2007775-0 (DE-576)103939180 |
normlinkwithrole_str_mv |
(DE-588)1140075780@@aut@@ (DE-588)1051525624@@aut@@ (DE-588)1175514764@@aut@@ |
title |
A hybrid machine learning approach to hotel sales rank prediction |
ctrlnum |
(DE-627)1858782082 (DE-599)KXP1858782082 |
title_full |
A hybrid machine learning approach to hotel sales rank prediction Praveen Ranjan Srivastava, Prajwal Eachempati, Vincent Charles, Nripendra P. Rana |
author_sort |
Srivastava, Praveen Ranjan |
journal |
Journal of the Operational Research Society |
journalStr |
Journal of the Operational Research Society |
callnumber-first-code |
- |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
1407 |
author_browse |
Srivastava, Praveen Ranjan Eachempati, Prajwal Charles, Vincent Rana, Nripendra P. |
selectkey |
26:x 2403:l |
container_volume |
74 |
format_se |
Elektronische Aufsätze |
author-letter |
Srivastava, Praveen Ranjan |
doi_str_mv |
10.1080/01605682.2022.2096498 |
normlink |
1140075780 898200490 493641688 1051525624 786386398 406609551 1175514764 1046499920 516284223 |
normlink_prefix_str_mv |
(DE-588)1140075780 (DE-627)898200490 (DE-576)493641688 (DE-588)1051525624 (DE-627)786386398 (DE-576)406609551 (DE-588)1175514764 (DE-627)1046499920 (DE-576)516284223 |
author2-role |
verfasserin |
title_sort |
hybrid machine learning approach to hotel sales rank prediction |
title_auth |
A hybrid machine learning approach to hotel sales rank prediction |
collection_details |
GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_31 GBV_ILN_63 GBV_ILN_70 GBV_ILN_100 GBV_ILN_224 GBV_ILN_285 GBV_ILN_370 GBV_ILN_374 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2107 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_2935 GBV_ILN_2940 GBV_ILN_2949 GBV_ILN_2950 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4346 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_2403 ISIL_DE-LFER |
container_issue |
6 |
title_short |
A hybrid machine learning approach to hotel sales rank prediction |
url |
https://www.tandfonline.com/doi/pdf/10.1080/01605682.2022.2096498 https://doi.org/10.1080/01605682.2022.2096498 |
ausleihindikator_str_mv |
26 2403:n |
rolewithnormlink_str_mv |
@@aut@@(DE-588)1140075780 @@aut@@(DE-588)1051525624 @@aut@@(DE-588)1175514764 |
remote_bool |
true |
author2 |
Eachempati, Prajwal Charles, Vincent Rana, Nripendra P. |
author2Str |
Eachempati, Prajwal Charles, Vincent Rana, Nripendra P. |
ppnlink |
320465098 |
GND_str_mv |
Srivastava, Praveen Ranjan Srivastava, Praveen Srivastava, Praveen Ranjan Charles, V. Charles, Vincent Rana, Nripendra P. Rana, Nripendra Rana, Nripendra P. |
GND_txt_mv |
Srivastava, Praveen Ranjan Srivastava, Praveen Srivastava, Praveen Ranjan Charles, V. Charles, Vincent Rana, Nripendra P. Rana, Nripendra Rana, Nripendra P. |
GND_txtF_mv |
Srivastava, Praveen Ranjan Srivastava, Praveen Srivastava, Praveen Ranjan Charles, V. Charles, Vincent Rana, Nripendra P. Rana, Nripendra Rana, Nripendra P. |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/01605682.2022.2096498 |
callnumber-a |
--%%-- |
up_date |
2024-07-04T12:12:05.236Z |
_version_ |
1803650466041561088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">1858782082</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240122145548.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230905s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/01605682.2022.2096498</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1858782082</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1858782082</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Srivastava, Praveen Ranjan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1140075780</subfield><subfield code="0">(DE-627)898200490</subfield><subfield code="0">(DE-576)493641688</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A hybrid machine learning approach to hotel sales rank prediction</subfield><subfield code="c">Praveen Ranjan Srivastava, Prajwal Eachempati, Vincent Charles, Nripendra P. Rana</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentiment analysis</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ANN</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">predictive model</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regression analysis</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sales rank prediction</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eachempati, Prajwal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Charles, Vincent</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1051525624</subfield><subfield code="0">(DE-627)786386398</subfield><subfield code="0">(DE-576)406609551</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rana, Nripendra P.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1175514764</subfield><subfield code="0">(DE-627)1046499920</subfield><subfield code="0">(DE-576)516284223</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Operational Research Society</subfield><subfield code="t">Journal of the Operational Research Society</subfield><subfield code="d">London : Taylor and Francis, 1978</subfield><subfield code="g">74(2023), 6, Seite 1407-1423</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320465098</subfield><subfield code="w">(DE-600)2007775-0</subfield><subfield code="w">(DE-576)103939180</subfield><subfield code="x">1476-9360</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:1407-1423</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tandfonline.com/doi/pdf/10.1080/01605682.2022.2096498</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/01605682.2022.2096498</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2935</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2940</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2949</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2950</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4346</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2403</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2403</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-LFER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield><subfield code="j">2023</subfield><subfield code="e">6</subfield><subfield code="h">1407-1423</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">01</subfield><subfield code="x">0206</subfield><subfield code="b">4372776209</subfield><subfield code="y">x1z</subfield><subfield code="z">05-09-23</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="b">4377734857</subfield><subfield code="c">00</subfield><subfield code="f">--%%--</subfield><subfield code="d">--%%--</subfield><subfield code="e">n</subfield><subfield code="j">--%%--</subfield><subfield code="y">l01</subfield><subfield code="z">19-09-23</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="r">https://doi.org/10.1080/01605682.2022.2096498</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="b">One of the challenges that the hospitality and tourism industry faces is determining the best-rated and ideal hotels for people with customized preferences. Users belong to various demographic groups, and the factors they consider when selecting a hotel depend on their priorities at the time. Therefore, to provide appropriate recommendations tailored to the individual preferences of users, forecasting customer demand is required, for which hotel sales rank prediction models are to be developed. In this regard, the present paper aims to develop a customized hotel recommendation model for sales rank prediction that considers factors like distance from a strategic location, online user ratings, word-of-mouth rating, hotel tariff, and customer reviews, using the aggregated data set of Indian hotels from trivago.com. Results show that the Artificial Neural Network algorithm predicts sales rank better than the Random Forest and Gradient Boosting algorithms. Implications for practice are provided.</subfield></datafield></record></collection>
|
score |
7.4013834 |