Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines
Long-term throughput, as a key performance indicator of a stochastic flow line, is affected by numerous parameters describing the features of the flow line, such as processing time and buffer size. Fast and accurate evaluation methods for a given set of values for those parameters are a prerequisite...
Ausführliche Beschreibung
Autor*in: |
Südbeck, Insa [verfasserIn] Mindlina, Julia [verfasserIn] Schnabel, André - 1987- [verfasserIn] Helber, Stefan - 1963- [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Rechteinformationen: |
Open Access Namensnennung 4.0 International ; CC BY 4.0 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Schmalenbach journal of business research - Wiesbaden : Springer Fachmedien, 1997, 76(2024), 2 vom: Juni, Seite 267-291 |
---|---|
Übergeordnetes Werk: |
volume:76 ; year:2024 ; number:2 ; month:06 ; pages:267-291 |
Links: |
---|
DOI / URN: |
10.1007/s41471-024-00183-5 |
---|
Katalog-ID: |
1891480065 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | 1891480065 | ||
003 | DE-627 | ||
005 | 20240827132549.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240618s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s41471-024-00183-5 |2 doi | |
024 | 7 | |a 10419/298800 |2 hdl | |
035 | |a (DE-627)1891480065 | ||
035 | |a (DE-599)KXP1891480065 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a C45 |a C61 |a M11 |2 jelc | ||
100 | 1 | |a Südbeck, Insa |e verfasserin |4 aut | |
245 | 1 | 0 | |a Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines |c Insa Südbeck, Julia Mindlina, André Schnabel, Stefan Helber |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
506 | 0 | |q DE-206 |a Open Access |e Controlled Vocabulary for Access Rights |u http://purl.org/coar/access_right/c_abf2 | |
520 | |a Long-term throughput, as a key performance indicator of a stochastic flow line, is affected by numerous parameters describing the features of the flow line, such as processing time and buffer size. Fast and accurate evaluation methods for a given set of values for those parameters are a prerequisite to systematically optimize such a flow line. In this paper, we consider the case of a flow line with random processing times, limited buffer capacities and so-called milkruns that supply the machines with material parts that are required to perform, e.g., assembly operations on workpieces. In such a system, shortages in the supply of material parts can limit the performance of the flow line. Up to now, there are no accurate analytical approaches to quantify the complex interactions in such milkrun-supplied flow lines for realistic problem sizes. We propose to use recurrent neural networks to determine the long-term throughput of such flow lines enabling us to evaluate production systems of flexible size. Our results show that the throughput can be determined accurately and quickly via recurrent neural networks. Furthermore, we use this new evaluation procedure as a building block to optimize this type of flow line using gradient and local search techniques. | ||
540 | |q DE-206 |a Namensnennung 4.0 International |f CC BY 4.0 |2 cc |u https://creativecommons.org/licenses/by/4.0/ | ||
650 | 4 | |a Buffer allocation |7 (dpeaa)DE-206 | |
650 | 4 | |a Flow line |7 (dpeaa)DE-206 | |
650 | 4 | |a Milk run |7 (dpeaa)DE-206 | |
650 | 4 | |a Neural network |7 (dpeaa)DE-206 | |
650 | 4 | |a Performance Evaluation |7 (dpeaa)DE-206 | |
700 | 1 | |a Mindlina, Julia |e verfasserin |0 (DE-588)1183025556 |0 (DE-627)1663000514 |4 aut | |
700 | 1 | |a Schnabel, André |d 1987- |e verfasserin |0 (DE-588)1217072446 |0 (DE-627)1728880173 |4 aut | |
700 | 1 | |a Helber, Stefan |d 1963- |e verfasserin |0 (DE-588)121396584 |0 (DE-627)081280858 |0 (DE-576)292688954 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Schmalenbach journal of business research |d Wiesbaden : Springer Fachmedien, 1997 |g 76(2024), 2 vom: Juni, Seite 267-291 |h Online-Ressource |w (DE-627)34585828X |w (DE-600)2076397-9 |w (DE-576)114818126 |x 2366-6153 |7 nnns |
773 | 1 | 8 | |g volume:76 |g year:2024 |g number:2 |g month:06 |g pages:267-291 |
856 | 4 | 0 | |u https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf |x Verlag |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1007/s41471-024-00183-5 |x Resolving-System |z kostenfrei |
856 | 4 | 0 | |u https://hdl.handle.net/10419/298800 |x Resolving-System |z kostenfrei |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ILN_26 | ||
912 | |a ISIL_DE-206 | ||
912 | |a SYSFLAG_1 | ||
912 | |a GBV_KXP | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_184 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
912 | |a GBV_ILN_4753 | ||
912 | |a GBV_ILN_2403 | ||
912 | |a GBV_ILN_2403 | ||
912 | |a ISIL_DE-LFER | ||
951 | |a AR | ||
952 | |d 76 |j 2024 |e 2 |c 6 |h 267-291 | ||
980 | |2 26 |1 01 |x 0206 |b 4539824678 |y x1z |z 18-06-24 | ||
980 | |2 2403 |1 01 |x DE-LFER |b 4547789029 |c 00 |f --%%-- |d --%%-- |e n |j --%%-- |y l01 |z 08-07-24 | ||
981 | |2 2403 |1 01 |x DE-LFER |r https://doi.org/10.1007/s41471-024-00183-5 | ||
981 | |2 2403 |1 01 |x DE-LFER |r https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf |
author_variant |
i s is j m jm a s as s h sh |
---|---|
matchkey_str |
article:23666153:2024----::snrcreterlewrsoteefracaayiadpiiainftcat |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1007/s41471-024-00183-5 doi 10419/298800 hdl (DE-627)1891480065 (DE-599)KXP1891480065 DE-627 ger DE-627 rda eng C45 C61 M11 jelc Südbeck, Insa verfasserin aut Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines Insa Südbeck, Julia Mindlina, André Schnabel, Stefan Helber 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier DE-206 Open Access Controlled Vocabulary for Access Rights http://purl.org/coar/access_right/c_abf2 Long-term throughput, as a key performance indicator of a stochastic flow line, is affected by numerous parameters describing the features of the flow line, such as processing time and buffer size. Fast and accurate evaluation methods for a given set of values for those parameters are a prerequisite to systematically optimize such a flow line. In this paper, we consider the case of a flow line with random processing times, limited buffer capacities and so-called milkruns that supply the machines with material parts that are required to perform, e.g., assembly operations on workpieces. In such a system, shortages in the supply of material parts can limit the performance of the flow line. Up to now, there are no accurate analytical approaches to quantify the complex interactions in such milkrun-supplied flow lines for realistic problem sizes. We propose to use recurrent neural networks to determine the long-term throughput of such flow lines enabling us to evaluate production systems of flexible size. Our results show that the throughput can be determined accurately and quickly via recurrent neural networks. Furthermore, we use this new evaluation procedure as a building block to optimize this type of flow line using gradient and local search techniques. DE-206 Namensnennung 4.0 International CC BY 4.0 cc https://creativecommons.org/licenses/by/4.0/ Buffer allocation (dpeaa)DE-206 Flow line (dpeaa)DE-206 Milk run (dpeaa)DE-206 Neural network (dpeaa)DE-206 Performance Evaluation (dpeaa)DE-206 Mindlina, Julia verfasserin (DE-588)1183025556 (DE-627)1663000514 aut Schnabel, André 1987- verfasserin (DE-588)1217072446 (DE-627)1728880173 aut Helber, Stefan 1963- verfasserin (DE-588)121396584 (DE-627)081280858 (DE-576)292688954 aut Enthalten in Schmalenbach journal of business research Wiesbaden : Springer Fachmedien, 1997 76(2024), 2 vom: Juni, Seite 267-291 Online-Ressource (DE-627)34585828X (DE-600)2076397-9 (DE-576)114818126 2366-6153 nnns volume:76 year:2024 number:2 month:06 pages:267-291 https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf Verlag kostenfrei https://doi.org/10.1007/s41471-024-00183-5 Resolving-System kostenfrei https://hdl.handle.net/10419/298800 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_184 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 GBV_ILN_4753 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 76 2024 2 6 267-291 26 01 0206 4539824678 x1z 18-06-24 2403 01 DE-LFER 4547789029 00 --%%-- --%%-- n --%%-- l01 08-07-24 2403 01 DE-LFER https://doi.org/10.1007/s41471-024-00183-5 2403 01 DE-LFER https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf |
spelling |
10.1007/s41471-024-00183-5 doi 10419/298800 hdl (DE-627)1891480065 (DE-599)KXP1891480065 DE-627 ger DE-627 rda eng C45 C61 M11 jelc Südbeck, Insa verfasserin aut Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines Insa Südbeck, Julia Mindlina, André Schnabel, Stefan Helber 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier DE-206 Open Access Controlled Vocabulary for Access Rights http://purl.org/coar/access_right/c_abf2 Long-term throughput, as a key performance indicator of a stochastic flow line, is affected by numerous parameters describing the features of the flow line, such as processing time and buffer size. Fast and accurate evaluation methods for a given set of values for those parameters are a prerequisite to systematically optimize such a flow line. In this paper, we consider the case of a flow line with random processing times, limited buffer capacities and so-called milkruns that supply the machines with material parts that are required to perform, e.g., assembly operations on workpieces. In such a system, shortages in the supply of material parts can limit the performance of the flow line. Up to now, there are no accurate analytical approaches to quantify the complex interactions in such milkrun-supplied flow lines for realistic problem sizes. We propose to use recurrent neural networks to determine the long-term throughput of such flow lines enabling us to evaluate production systems of flexible size. Our results show that the throughput can be determined accurately and quickly via recurrent neural networks. Furthermore, we use this new evaluation procedure as a building block to optimize this type of flow line using gradient and local search techniques. DE-206 Namensnennung 4.0 International CC BY 4.0 cc https://creativecommons.org/licenses/by/4.0/ Buffer allocation (dpeaa)DE-206 Flow line (dpeaa)DE-206 Milk run (dpeaa)DE-206 Neural network (dpeaa)DE-206 Performance Evaluation (dpeaa)DE-206 Mindlina, Julia verfasserin (DE-588)1183025556 (DE-627)1663000514 aut Schnabel, André 1987- verfasserin (DE-588)1217072446 (DE-627)1728880173 aut Helber, Stefan 1963- verfasserin (DE-588)121396584 (DE-627)081280858 (DE-576)292688954 aut Enthalten in Schmalenbach journal of business research Wiesbaden : Springer Fachmedien, 1997 76(2024), 2 vom: Juni, Seite 267-291 Online-Ressource (DE-627)34585828X (DE-600)2076397-9 (DE-576)114818126 2366-6153 nnns volume:76 year:2024 number:2 month:06 pages:267-291 https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf Verlag kostenfrei https://doi.org/10.1007/s41471-024-00183-5 Resolving-System kostenfrei https://hdl.handle.net/10419/298800 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_184 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 GBV_ILN_4753 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 76 2024 2 6 267-291 26 01 0206 4539824678 x1z 18-06-24 2403 01 DE-LFER 4547789029 00 --%%-- --%%-- n --%%-- l01 08-07-24 2403 01 DE-LFER https://doi.org/10.1007/s41471-024-00183-5 2403 01 DE-LFER https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf |
allfields_unstemmed |
10.1007/s41471-024-00183-5 doi 10419/298800 hdl (DE-627)1891480065 (DE-599)KXP1891480065 DE-627 ger DE-627 rda eng C45 C61 M11 jelc Südbeck, Insa verfasserin aut Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines Insa Südbeck, Julia Mindlina, André Schnabel, Stefan Helber 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier DE-206 Open Access Controlled Vocabulary for Access Rights http://purl.org/coar/access_right/c_abf2 Long-term throughput, as a key performance indicator of a stochastic flow line, is affected by numerous parameters describing the features of the flow line, such as processing time and buffer size. Fast and accurate evaluation methods for a given set of values for those parameters are a prerequisite to systematically optimize such a flow line. In this paper, we consider the case of a flow line with random processing times, limited buffer capacities and so-called milkruns that supply the machines with material parts that are required to perform, e.g., assembly operations on workpieces. In such a system, shortages in the supply of material parts can limit the performance of the flow line. Up to now, there are no accurate analytical approaches to quantify the complex interactions in such milkrun-supplied flow lines for realistic problem sizes. We propose to use recurrent neural networks to determine the long-term throughput of such flow lines enabling us to evaluate production systems of flexible size. Our results show that the throughput can be determined accurately and quickly via recurrent neural networks. Furthermore, we use this new evaluation procedure as a building block to optimize this type of flow line using gradient and local search techniques. DE-206 Namensnennung 4.0 International CC BY 4.0 cc https://creativecommons.org/licenses/by/4.0/ Buffer allocation (dpeaa)DE-206 Flow line (dpeaa)DE-206 Milk run (dpeaa)DE-206 Neural network (dpeaa)DE-206 Performance Evaluation (dpeaa)DE-206 Mindlina, Julia verfasserin (DE-588)1183025556 (DE-627)1663000514 aut Schnabel, André 1987- verfasserin (DE-588)1217072446 (DE-627)1728880173 aut Helber, Stefan 1963- verfasserin (DE-588)121396584 (DE-627)081280858 (DE-576)292688954 aut Enthalten in Schmalenbach journal of business research Wiesbaden : Springer Fachmedien, 1997 76(2024), 2 vom: Juni, Seite 267-291 Online-Ressource (DE-627)34585828X (DE-600)2076397-9 (DE-576)114818126 2366-6153 nnns volume:76 year:2024 number:2 month:06 pages:267-291 https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf Verlag kostenfrei https://doi.org/10.1007/s41471-024-00183-5 Resolving-System kostenfrei https://hdl.handle.net/10419/298800 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_184 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 GBV_ILN_4753 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 76 2024 2 6 267-291 26 01 0206 4539824678 x1z 18-06-24 2403 01 DE-LFER 4547789029 00 --%%-- --%%-- n --%%-- l01 08-07-24 2403 01 DE-LFER https://doi.org/10.1007/s41471-024-00183-5 2403 01 DE-LFER https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf |
allfieldsGer |
10.1007/s41471-024-00183-5 doi 10419/298800 hdl (DE-627)1891480065 (DE-599)KXP1891480065 DE-627 ger DE-627 rda eng C45 C61 M11 jelc Südbeck, Insa verfasserin aut Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines Insa Südbeck, Julia Mindlina, André Schnabel, Stefan Helber 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier DE-206 Open Access Controlled Vocabulary for Access Rights http://purl.org/coar/access_right/c_abf2 Long-term throughput, as a key performance indicator of a stochastic flow line, is affected by numerous parameters describing the features of the flow line, such as processing time and buffer size. Fast and accurate evaluation methods for a given set of values for those parameters are a prerequisite to systematically optimize such a flow line. In this paper, we consider the case of a flow line with random processing times, limited buffer capacities and so-called milkruns that supply the machines with material parts that are required to perform, e.g., assembly operations on workpieces. In such a system, shortages in the supply of material parts can limit the performance of the flow line. Up to now, there are no accurate analytical approaches to quantify the complex interactions in such milkrun-supplied flow lines for realistic problem sizes. We propose to use recurrent neural networks to determine the long-term throughput of such flow lines enabling us to evaluate production systems of flexible size. Our results show that the throughput can be determined accurately and quickly via recurrent neural networks. Furthermore, we use this new evaluation procedure as a building block to optimize this type of flow line using gradient and local search techniques. DE-206 Namensnennung 4.0 International CC BY 4.0 cc https://creativecommons.org/licenses/by/4.0/ Buffer allocation (dpeaa)DE-206 Flow line (dpeaa)DE-206 Milk run (dpeaa)DE-206 Neural network (dpeaa)DE-206 Performance Evaluation (dpeaa)DE-206 Mindlina, Julia verfasserin (DE-588)1183025556 (DE-627)1663000514 aut Schnabel, André 1987- verfasserin (DE-588)1217072446 (DE-627)1728880173 aut Helber, Stefan 1963- verfasserin (DE-588)121396584 (DE-627)081280858 (DE-576)292688954 aut Enthalten in Schmalenbach journal of business research Wiesbaden : Springer Fachmedien, 1997 76(2024), 2 vom: Juni, Seite 267-291 Online-Ressource (DE-627)34585828X (DE-600)2076397-9 (DE-576)114818126 2366-6153 nnns volume:76 year:2024 number:2 month:06 pages:267-291 https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf Verlag kostenfrei https://doi.org/10.1007/s41471-024-00183-5 Resolving-System kostenfrei https://hdl.handle.net/10419/298800 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_184 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 GBV_ILN_4753 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 76 2024 2 6 267-291 26 01 0206 4539824678 x1z 18-06-24 2403 01 DE-LFER 4547789029 00 --%%-- --%%-- n --%%-- l01 08-07-24 2403 01 DE-LFER https://doi.org/10.1007/s41471-024-00183-5 2403 01 DE-LFER https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf |
allfieldsSound |
10.1007/s41471-024-00183-5 doi 10419/298800 hdl (DE-627)1891480065 (DE-599)KXP1891480065 DE-627 ger DE-627 rda eng C45 C61 M11 jelc Südbeck, Insa verfasserin aut Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines Insa Südbeck, Julia Mindlina, André Schnabel, Stefan Helber 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier DE-206 Open Access Controlled Vocabulary for Access Rights http://purl.org/coar/access_right/c_abf2 Long-term throughput, as a key performance indicator of a stochastic flow line, is affected by numerous parameters describing the features of the flow line, such as processing time and buffer size. Fast and accurate evaluation methods for a given set of values for those parameters are a prerequisite to systematically optimize such a flow line. In this paper, we consider the case of a flow line with random processing times, limited buffer capacities and so-called milkruns that supply the machines with material parts that are required to perform, e.g., assembly operations on workpieces. In such a system, shortages in the supply of material parts can limit the performance of the flow line. Up to now, there are no accurate analytical approaches to quantify the complex interactions in such milkrun-supplied flow lines for realistic problem sizes. We propose to use recurrent neural networks to determine the long-term throughput of such flow lines enabling us to evaluate production systems of flexible size. Our results show that the throughput can be determined accurately and quickly via recurrent neural networks. Furthermore, we use this new evaluation procedure as a building block to optimize this type of flow line using gradient and local search techniques. DE-206 Namensnennung 4.0 International CC BY 4.0 cc https://creativecommons.org/licenses/by/4.0/ Buffer allocation (dpeaa)DE-206 Flow line (dpeaa)DE-206 Milk run (dpeaa)DE-206 Neural network (dpeaa)DE-206 Performance Evaluation (dpeaa)DE-206 Mindlina, Julia verfasserin (DE-588)1183025556 (DE-627)1663000514 aut Schnabel, André 1987- verfasserin (DE-588)1217072446 (DE-627)1728880173 aut Helber, Stefan 1963- verfasserin (DE-588)121396584 (DE-627)081280858 (DE-576)292688954 aut Enthalten in Schmalenbach journal of business research Wiesbaden : Springer Fachmedien, 1997 76(2024), 2 vom: Juni, Seite 267-291 Online-Ressource (DE-627)34585828X (DE-600)2076397-9 (DE-576)114818126 2366-6153 nnns volume:76 year:2024 number:2 month:06 pages:267-291 https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf Verlag kostenfrei https://doi.org/10.1007/s41471-024-00183-5 Resolving-System kostenfrei https://hdl.handle.net/10419/298800 Resolving-System kostenfrei GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_184 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 GBV_ILN_4753 GBV_ILN_2403 GBV_ILN_2403 ISIL_DE-LFER AR 76 2024 2 6 267-291 26 01 0206 4539824678 x1z 18-06-24 2403 01 DE-LFER 4547789029 00 --%%-- --%%-- n --%%-- l01 08-07-24 2403 01 DE-LFER https://doi.org/10.1007/s41471-024-00183-5 2403 01 DE-LFER https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf |
language |
English |
source |
Enthalten in Schmalenbach journal of business research 76(2024), 2 vom: Juni, Seite 267-291 volume:76 year:2024 number:2 month:06 pages:267-291 |
sourceStr |
Enthalten in Schmalenbach journal of business research 76(2024), 2 vom: Juni, Seite 267-291 volume:76 year:2024 number:2 month:06 pages:267-291 |
format_phy_str_mv |
Article |
building |
26:1 2403:0 |
institution |
findex.gbv.de |
selectbib_iln_str_mv |
26@1z 2403@01 |
topic_facet |
Buffer allocation Flow line Milk run Neural network Performance Evaluation |
isfreeaccess_bool |
true |
container_title |
Schmalenbach journal of business research |
authorswithroles_txt_mv |
Südbeck, Insa @@aut@@ Mindlina, Julia @@aut@@ Schnabel, André @@aut@@ Helber, Stefan @@aut@@ |
publishDateDaySort_date |
2024-06-01T00:00:00Z |
hierarchy_top_id |
34585828X |
id |
1891480065 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">1891480065</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240827132549.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240618s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s41471-024-00183-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10419/298800</subfield><subfield code="2">hdl</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1891480065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1891480065</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">C45</subfield><subfield code="a">C61</subfield><subfield code="a">M11</subfield><subfield code="2">jelc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Südbeck, Insa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines</subfield><subfield code="c">Insa Südbeck, Julia Mindlina, André Schnabel, Stefan Helber</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="506" ind1="0" ind2=" "><subfield code="q">DE-206</subfield><subfield code="a">Open Access</subfield><subfield code="e">Controlled Vocabulary for Access Rights</subfield><subfield code="u">http://purl.org/coar/access_right/c_abf2</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Long-term throughput, as a key performance indicator of a stochastic flow line, is affected by numerous parameters describing the features of the flow line, such as processing time and buffer size. Fast and accurate evaluation methods for a given set of values for those parameters are a prerequisite to systematically optimize such a flow line. In this paper, we consider the case of a flow line with random processing times, limited buffer capacities and so-called milkruns that supply the machines with material parts that are required to perform, e.g., assembly operations on workpieces. In such a system, shortages in the supply of material parts can limit the performance of the flow line. Up to now, there are no accurate analytical approaches to quantify the complex interactions in such milkrun-supplied flow lines for realistic problem sizes. We propose to use recurrent neural networks to determine the long-term throughput of such flow lines enabling us to evaluate production systems of flexible size. Our results show that the throughput can be determined accurately and quickly via recurrent neural networks. Furthermore, we use this new evaluation procedure as a building block to optimize this type of flow line using gradient and local search techniques.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="q">DE-206</subfield><subfield code="a">Namensnennung 4.0 International</subfield><subfield code="f">CC BY 4.0</subfield><subfield code="2">cc</subfield><subfield code="u">https://creativecommons.org/licenses/by/4.0/</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buffer allocation</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow line</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Milk run</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural network</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance Evaluation</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mindlina, Julia</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1183025556</subfield><subfield code="0">(DE-627)1663000514</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schnabel, André</subfield><subfield code="d">1987-</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1217072446</subfield><subfield code="0">(DE-627)1728880173</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Helber, Stefan</subfield><subfield code="d">1963-</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)121396584</subfield><subfield code="0">(DE-627)081280858</subfield><subfield code="0">(DE-576)292688954</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Schmalenbach journal of business research</subfield><subfield code="d">Wiesbaden : Springer Fachmedien, 1997</subfield><subfield code="g">76(2024), 2 vom: Juni, Seite 267-291</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)34585828X</subfield><subfield code="w">(DE-600)2076397-9</subfield><subfield code="w">(DE-576)114818126</subfield><subfield code="x">2366-6153</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:267-291</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s41471-024-00183-5</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://hdl.handle.net/10419/298800</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_184</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4753</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2403</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2403</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-LFER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2024</subfield><subfield code="e">2</subfield><subfield code="c">6</subfield><subfield code="h">267-291</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">01</subfield><subfield code="x">0206</subfield><subfield code="b">4539824678</subfield><subfield code="y">x1z</subfield><subfield code="z">18-06-24</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="b">4547789029</subfield><subfield code="c">00</subfield><subfield code="f">--%%--</subfield><subfield code="d">--%%--</subfield><subfield code="e">n</subfield><subfield code="j">--%%--</subfield><subfield code="y">l01</subfield><subfield code="z">08-07-24</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="r">https://doi.org/10.1007/s41471-024-00183-5</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="r">https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf</subfield></datafield></record></collection>
|
standort_str_mv |
--%%-- |
standort_iln_str_mv |
2403:--%%-- DE-LFER:--%%-- |
author |
Südbeck, Insa |
spellingShingle |
Südbeck, Insa jelc C45 misc Buffer allocation misc Flow line misc Milk run misc Neural network misc Performance Evaluation Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines |
authorStr |
Südbeck, Insa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)34585828X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
typewithnormlink_str_mv |
DifferentiatedPerson@(DE-588)1183025556 Person@(DE-588)1183025556 Person@(DE-588)1217072446 DifferentiatedPerson@(DE-588)1217072446 Person@(DE-588)121396584 DifferentiatedPerson@(DE-588)121396584 |
collection |
KXP GVK SWB |
remote_str |
true |
last_changed_iln_str_mv |
26@18-06-24 2403@08-07-24 |
illustrated |
Not Illustrated |
issn |
2366-6153 |
topic_title |
C45 C61 M11 jelc Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines Insa Südbeck, Julia Mindlina, André Schnabel, Stefan Helber Buffer allocation (dpeaa)DE-206 Flow line (dpeaa)DE-206 Milk run (dpeaa)DE-206 Neural network (dpeaa)DE-206 Performance Evaluation (dpeaa)DE-206 |
topic |
jelc C45 misc Buffer allocation misc Flow line misc Milk run misc Neural network misc Performance Evaluation |
topic_unstemmed |
jelc C45 misc Buffer allocation misc Flow line misc Milk run misc Neural network misc Performance Evaluation |
topic_browse |
jelc C45 misc Buffer allocation misc Flow line misc Milk run misc Neural network misc Performance Evaluation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
standort_txtP_mv |
--%%-- |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Schmalenbach journal of business research |
normlinkwithtype_str_mv |
(DE-588)1183025556@DifferentiatedPerson (DE-588)1183025556@Person (DE-588)1217072446@Person (DE-588)1217072446@DifferentiatedPerson (DE-588)121396584@Person (DE-588)121396584@DifferentiatedPerson |
hierarchy_parent_id |
34585828X |
signature |
--%%-- |
signature_str_mv |
--%%-- |
hierarchy_top_title |
Schmalenbach journal of business research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)34585828X (DE-600)2076397-9 (DE-576)114818126 |
normlinkwithrole_str_mv |
(DE-588)1183025556@@aut@@ (DE-588)1217072446@@aut@@ (DE-588)121396584@@aut@@ |
title |
Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines |
ctrlnum |
(DE-627)1891480065 (DE-599)KXP1891480065 |
title_full |
Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines Insa Südbeck, Julia Mindlina, André Schnabel, Stefan Helber |
author_sort |
Südbeck, Insa |
journal |
Schmalenbach journal of business research |
journalStr |
Schmalenbach journal of business research |
callnumber-first-code |
- |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
267 |
author_browse |
Südbeck, Insa Mindlina, Julia Schnabel, André Helber, Stefan |
selectkey |
26:x 2403:l |
container_volume |
76 |
class |
C45 C61 M11 jelc |
format_se |
Elektronische Aufsätze |
author-letter |
Südbeck, Insa |
doi_str_mv |
10.1007/s41471-024-00183-5 |
normlink |
1183025556 1663000514 1217072446 1728880173 121396584 081280858 292688954 |
normlink_prefix_str_mv |
(DE-588)1183025556 (DE-627)1663000514 (DE-588)1217072446 (DE-627)1728880173 (DE-588)121396584 (DE-627)081280858 (DE-576)292688954 |
author2-role |
verfasserin |
title_sort |
using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines |
title_auth |
Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines |
abstract |
Long-term throughput, as a key performance indicator of a stochastic flow line, is affected by numerous parameters describing the features of the flow line, such as processing time and buffer size. Fast and accurate evaluation methods for a given set of values for those parameters are a prerequisite to systematically optimize such a flow line. In this paper, we consider the case of a flow line with random processing times, limited buffer capacities and so-called milkruns that supply the machines with material parts that are required to perform, e.g., assembly operations on workpieces. In such a system, shortages in the supply of material parts can limit the performance of the flow line. Up to now, there are no accurate analytical approaches to quantify the complex interactions in such milkrun-supplied flow lines for realistic problem sizes. We propose to use recurrent neural networks to determine the long-term throughput of such flow lines enabling us to evaluate production systems of flexible size. Our results show that the throughput can be determined accurately and quickly via recurrent neural networks. Furthermore, we use this new evaluation procedure as a building block to optimize this type of flow line using gradient and local search techniques. |
abstractGer |
Long-term throughput, as a key performance indicator of a stochastic flow line, is affected by numerous parameters describing the features of the flow line, such as processing time and buffer size. Fast and accurate evaluation methods for a given set of values for those parameters are a prerequisite to systematically optimize such a flow line. In this paper, we consider the case of a flow line with random processing times, limited buffer capacities and so-called milkruns that supply the machines with material parts that are required to perform, e.g., assembly operations on workpieces. In such a system, shortages in the supply of material parts can limit the performance of the flow line. Up to now, there are no accurate analytical approaches to quantify the complex interactions in such milkrun-supplied flow lines for realistic problem sizes. We propose to use recurrent neural networks to determine the long-term throughput of such flow lines enabling us to evaluate production systems of flexible size. Our results show that the throughput can be determined accurately and quickly via recurrent neural networks. Furthermore, we use this new evaluation procedure as a building block to optimize this type of flow line using gradient and local search techniques. |
abstract_unstemmed |
Long-term throughput, as a key performance indicator of a stochastic flow line, is affected by numerous parameters describing the features of the flow line, such as processing time and buffer size. Fast and accurate evaluation methods for a given set of values for those parameters are a prerequisite to systematically optimize such a flow line. In this paper, we consider the case of a flow line with random processing times, limited buffer capacities and so-called milkruns that supply the machines with material parts that are required to perform, e.g., assembly operations on workpieces. In such a system, shortages in the supply of material parts can limit the performance of the flow line. Up to now, there are no accurate analytical approaches to quantify the complex interactions in such milkrun-supplied flow lines for realistic problem sizes. We propose to use recurrent neural networks to determine the long-term throughput of such flow lines enabling us to evaluate production systems of flexible size. Our results show that the throughput can be determined accurately and quickly via recurrent neural networks. Furthermore, we use this new evaluation procedure as a building block to optimize this type of flow line using gradient and local search techniques. |
collection_details |
GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_184 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 GBV_ILN_4753 GBV_ILN_2403 ISIL_DE-LFER |
container_issue |
2 |
title_short |
Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines |
url |
https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf https://doi.org/10.1007/s41471-024-00183-5 https://hdl.handle.net/10419/298800 |
ausleihindikator_str_mv |
26 2403:n |
rolewithnormlink_str_mv |
@@aut@@(DE-588)1183025556 @@aut@@(DE-588)1217072446 @@aut@@(DE-588)121396584 |
remote_bool |
true |
author2 |
Mindlina, Julia Schnabel, André 1987- Helber, Stefan 1963- |
author2Str |
Mindlina, Julia Schnabel, André 1987- Helber, Stefan 1963- |
ppnlink |
34585828X |
GND_str_mv |
Mindlina, Julia Schnabel, André Helber, Stefan |
GND_txt_mv |
Mindlina, Julia Schnabel, André Helber, Stefan |
GND_txtF_mv |
Mindlina, Julia Schnabel, André Helber, Stefan |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s41471-024-00183-5 |
callnumber-a |
--%%-- |
up_date |
2024-08-28T04:31:11.872Z |
_version_ |
1808604302538702848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">1891480065</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240827132549.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240618s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s41471-024-00183-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10419/298800</subfield><subfield code="2">hdl</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)1891480065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1891480065</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">C45</subfield><subfield code="a">C61</subfield><subfield code="a">M11</subfield><subfield code="2">jelc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Südbeck, Insa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Using recurrent neural networks for the performance analysis and optimization of stochastic milkrun-supplied flow lines</subfield><subfield code="c">Insa Südbeck, Julia Mindlina, André Schnabel, Stefan Helber</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="506" ind1="0" ind2=" "><subfield code="q">DE-206</subfield><subfield code="a">Open Access</subfield><subfield code="e">Controlled Vocabulary for Access Rights</subfield><subfield code="u">http://purl.org/coar/access_right/c_abf2</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Long-term throughput, as a key performance indicator of a stochastic flow line, is affected by numerous parameters describing the features of the flow line, such as processing time and buffer size. Fast and accurate evaluation methods for a given set of values for those parameters are a prerequisite to systematically optimize such a flow line. In this paper, we consider the case of a flow line with random processing times, limited buffer capacities and so-called milkruns that supply the machines with material parts that are required to perform, e.g., assembly operations on workpieces. In such a system, shortages in the supply of material parts can limit the performance of the flow line. Up to now, there are no accurate analytical approaches to quantify the complex interactions in such milkrun-supplied flow lines for realistic problem sizes. We propose to use recurrent neural networks to determine the long-term throughput of such flow lines enabling us to evaluate production systems of flexible size. Our results show that the throughput can be determined accurately and quickly via recurrent neural networks. Furthermore, we use this new evaluation procedure as a building block to optimize this type of flow line using gradient and local search techniques.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="q">DE-206</subfield><subfield code="a">Namensnennung 4.0 International</subfield><subfield code="f">CC BY 4.0</subfield><subfield code="2">cc</subfield><subfield code="u">https://creativecommons.org/licenses/by/4.0/</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buffer allocation</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow line</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Milk run</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural network</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance Evaluation</subfield><subfield code="7">(dpeaa)DE-206</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mindlina, Julia</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1183025556</subfield><subfield code="0">(DE-627)1663000514</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schnabel, André</subfield><subfield code="d">1987-</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)1217072446</subfield><subfield code="0">(DE-627)1728880173</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Helber, Stefan</subfield><subfield code="d">1963-</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(DE-588)121396584</subfield><subfield code="0">(DE-627)081280858</subfield><subfield code="0">(DE-576)292688954</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Schmalenbach journal of business research</subfield><subfield code="d">Wiesbaden : Springer Fachmedien, 1997</subfield><subfield code="g">76(2024), 2 vom: Juni, Seite 267-291</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)34585828X</subfield><subfield code="w">(DE-600)2076397-9</subfield><subfield code="w">(DE-576)114818126</subfield><subfield code="x">2366-6153</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:267-291</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s41471-024-00183-5</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://hdl.handle.net/10419/298800</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_184</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4753</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2403</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2403</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-LFER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2024</subfield><subfield code="e">2</subfield><subfield code="c">6</subfield><subfield code="h">267-291</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">01</subfield><subfield code="x">0206</subfield><subfield code="b">4539824678</subfield><subfield code="y">x1z</subfield><subfield code="z">18-06-24</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="b">4547789029</subfield><subfield code="c">00</subfield><subfield code="f">--%%--</subfield><subfield code="d">--%%--</subfield><subfield code="e">n</subfield><subfield code="j">--%%--</subfield><subfield code="y">l01</subfield><subfield code="z">08-07-24</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="r">https://doi.org/10.1007/s41471-024-00183-5</subfield></datafield><datafield tag="981" ind1=" " ind2=" "><subfield code="2">2403</subfield><subfield code="1">01</subfield><subfield code="x">DE-LFER</subfield><subfield code="r">https://link.springer.com/content/pdf/10.1007/s41471-024-00183-5.pdf</subfield></datafield></record></collection>
|
score |
6.902795 |