ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series
The research used a long memory or Autoregressive Fractionally Integrated Moving Average model to study and forecast crude oil prices using weekly West Texas Intermediate and Brent series for the period 15/5/1987 to 20/12/2013. Fractional differencing Methods such as Local Whittle Estimator and Gewe...
Ausführliche Beschreibung
Autor*in: |
Jibrin, Sanusi A. [verfasserIn] Musa, Yakubu [verfasserIn] Zubair, Umar A. [verfasserIn] Saidu, Ahmed S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
December 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: CBN journal of applied statistics - Abuja : Central Bank of Nigeria, 2012, 6(2015), 2 vom: Dez., Seite 59-79 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2015 ; number:2 ; month:12 ; pages:59-79 |
Links: |
---|
Katalog-ID: |
859169502 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | 859169502 | ||
003 | DE-627 | ||
005 | 20160610150356.0 | ||
007 | cr uuu---uuuuu | ||
008 | 160512s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10419/142106 |2 hdl | |
035 | |a (DE-627)859169502 | ||
035 | |a (DE-599)GBV859169502 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a C22 |a C50 , D12 |2 jelc | ||
100 | 1 | |a Jibrin, Sanusi A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series |c Sanusi A. Jibrin, Yakubu Musa, Umar A. Zubair and Ahmed S. Saidu |
264 | 1 | |c December 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The research used a long memory or Autoregressive Fractionally Integrated Moving Average model to study and forecast crude oil prices using weekly West Texas Intermediate and Brent series for the period 15/5/1987 to 20/12/2013. Fractional differencing Methods such as Local Whittle Estimator and Geweke and Porter-Hudak identified long memory characteristics in the crude oil prices. For WTI series, the Bayes Information Criteria selected 3 breaks with the first, second and last breaks captured in 1999, 2004 and 2008 respectively. Three breaks in Brent series using the Bayes Information Criteria were selected and this pointed out that Brent series has break points in 1999, 2005 and 2009. Numerous ARFIMA models were identified, selected using Akaike Information Criterion, estimated/check, in sample and out sample forecast was carried out using Box and Jenkins methodology. ARFIMA(1,0.47,2) is appropriate for West Texas Intermediate series while ARFIMA(2,0.09,0) is suitable for Brent series. One year in sample forecast indicates a small difference between the original series and the forecast results. The one year out sample forecast revealed a decline in future crude oil prices which may be good news to the consumers and bad news to the producers. | ||
700 | 1 | |a Musa, Yakubu |e verfasserin |4 aut | |
700 | 1 | |a Zubair, Umar A. |e verfasserin |4 aut | |
700 | 1 | |a Saidu, Ahmed S. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t CBN journal of applied statistics |d Abuja : Central Bank of Nigeria, 2012 |g 6(2015), 2 vom: Dez., Seite 59-79 |h Online-Ressource |w (DE-627)858901404 |w (DE-600)2854997-1 |w (DE-576)469408812 |x 2476-8472 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2015 |g number:2 |g month:12 |g pages:59-79 |
856 | 4 | 0 | |u http://hdl.handle.net/10419/142106 |x Resolving-System |3 Volltext |
856 | 4 | 0 | |u http://www.cenbank.org/Out/2016/SD/ARFIMA%20Modelling%20and%20Investigation%20of%20Structural%20Breaks%20in%20West%20Texas%20Intermediate%20and%20Brent%20Series.pdf |x Verlag |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ILN_26 | ||
912 | |a ISIL_DE-206 | ||
912 | |a SYSFLAG_1 | ||
912 | |a GBV_KXP | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2015 |e 2 |c 12 |h 59-79 | ||
980 | |2 26 |1 01 |x 0206 |b 1615695664 |y x1k |z 12-05-16 | ||
982 | |2 26 |1 00 |x DE-206 |8 56 |a ARFIMA model | ||
982 | |2 26 |1 00 |x DE-206 |8 56 |a Structural breaks | ||
982 | |2 26 |1 00 |x DE-206 |8 56 |a Long memory | ||
982 | |2 26 |1 00 |x DE-206 |8 56 |a Local Whittle Estimator and Crude oil prices |
author_variant |
s a j sa saj y m ym u a z ua uaz a s s as ass |
---|---|
matchkey_str |
article:24768472:2015----::riaoelnadnetgtoosrcuabekiwstxsn |
hierarchy_sort_str |
December 2015 |
publishDate |
2015 |
allfields |
10419/142106 hdl (DE-627)859169502 (DE-599)GBV859169502 DE-627 ger DE-627 rda eng C22 C50 , D12 jelc Jibrin, Sanusi A. verfasserin aut ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series Sanusi A. Jibrin, Yakubu Musa, Umar A. Zubair and Ahmed S. Saidu December 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The research used a long memory or Autoregressive Fractionally Integrated Moving Average model to study and forecast crude oil prices using weekly West Texas Intermediate and Brent series for the period 15/5/1987 to 20/12/2013. Fractional differencing Methods such as Local Whittle Estimator and Geweke and Porter-Hudak identified long memory characteristics in the crude oil prices. For WTI series, the Bayes Information Criteria selected 3 breaks with the first, second and last breaks captured in 1999, 2004 and 2008 respectively. Three breaks in Brent series using the Bayes Information Criteria were selected and this pointed out that Brent series has break points in 1999, 2005 and 2009. Numerous ARFIMA models were identified, selected using Akaike Information Criterion, estimated/check, in sample and out sample forecast was carried out using Box and Jenkins methodology. ARFIMA(1,0.47,2) is appropriate for West Texas Intermediate series while ARFIMA(2,0.09,0) is suitable for Brent series. One year in sample forecast indicates a small difference between the original series and the forecast results. The one year out sample forecast revealed a decline in future crude oil prices which may be good news to the consumers and bad news to the producers. Musa, Yakubu verfasserin aut Zubair, Umar A. verfasserin aut Saidu, Ahmed S. verfasserin aut Enthalten in CBN journal of applied statistics Abuja : Central Bank of Nigeria, 2012 6(2015), 2 vom: Dez., Seite 59-79 Online-Ressource (DE-627)858901404 (DE-600)2854997-1 (DE-576)469408812 2476-8472 nnns volume:6 year:2015 number:2 month:12 pages:59-79 http://hdl.handle.net/10419/142106 Resolving-System Volltext http://www.cenbank.org/Out/2016/SD/ARFIMA%20Modelling%20and%20Investigation%20of%20Structural%20Breaks%20in%20West%20Texas%20Intermediate%20and%20Brent%20Series.pdf Verlag Volltext GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2015 2 12 59-79 26 01 0206 1615695664 x1k 12-05-16 26 00 DE-206 56 ARFIMA model 26 00 DE-206 56 Structural breaks 26 00 DE-206 56 Long memory 26 00 DE-206 56 Local Whittle Estimator and Crude oil prices |
spelling |
10419/142106 hdl (DE-627)859169502 (DE-599)GBV859169502 DE-627 ger DE-627 rda eng C22 C50 , D12 jelc Jibrin, Sanusi A. verfasserin aut ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series Sanusi A. Jibrin, Yakubu Musa, Umar A. Zubair and Ahmed S. Saidu December 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The research used a long memory or Autoregressive Fractionally Integrated Moving Average model to study and forecast crude oil prices using weekly West Texas Intermediate and Brent series for the period 15/5/1987 to 20/12/2013. Fractional differencing Methods such as Local Whittle Estimator and Geweke and Porter-Hudak identified long memory characteristics in the crude oil prices. For WTI series, the Bayes Information Criteria selected 3 breaks with the first, second and last breaks captured in 1999, 2004 and 2008 respectively. Three breaks in Brent series using the Bayes Information Criteria were selected and this pointed out that Brent series has break points in 1999, 2005 and 2009. Numerous ARFIMA models were identified, selected using Akaike Information Criterion, estimated/check, in sample and out sample forecast was carried out using Box and Jenkins methodology. ARFIMA(1,0.47,2) is appropriate for West Texas Intermediate series while ARFIMA(2,0.09,0) is suitable for Brent series. One year in sample forecast indicates a small difference between the original series and the forecast results. The one year out sample forecast revealed a decline in future crude oil prices which may be good news to the consumers and bad news to the producers. Musa, Yakubu verfasserin aut Zubair, Umar A. verfasserin aut Saidu, Ahmed S. verfasserin aut Enthalten in CBN journal of applied statistics Abuja : Central Bank of Nigeria, 2012 6(2015), 2 vom: Dez., Seite 59-79 Online-Ressource (DE-627)858901404 (DE-600)2854997-1 (DE-576)469408812 2476-8472 nnns volume:6 year:2015 number:2 month:12 pages:59-79 http://hdl.handle.net/10419/142106 Resolving-System Volltext http://www.cenbank.org/Out/2016/SD/ARFIMA%20Modelling%20and%20Investigation%20of%20Structural%20Breaks%20in%20West%20Texas%20Intermediate%20and%20Brent%20Series.pdf Verlag Volltext GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2015 2 12 59-79 26 01 0206 1615695664 x1k 12-05-16 26 00 DE-206 56 ARFIMA model 26 00 DE-206 56 Structural breaks 26 00 DE-206 56 Long memory 26 00 DE-206 56 Local Whittle Estimator and Crude oil prices |
allfields_unstemmed |
10419/142106 hdl (DE-627)859169502 (DE-599)GBV859169502 DE-627 ger DE-627 rda eng C22 C50 , D12 jelc Jibrin, Sanusi A. verfasserin aut ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series Sanusi A. Jibrin, Yakubu Musa, Umar A. Zubair and Ahmed S. Saidu December 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The research used a long memory or Autoregressive Fractionally Integrated Moving Average model to study and forecast crude oil prices using weekly West Texas Intermediate and Brent series for the period 15/5/1987 to 20/12/2013. Fractional differencing Methods such as Local Whittle Estimator and Geweke and Porter-Hudak identified long memory characteristics in the crude oil prices. For WTI series, the Bayes Information Criteria selected 3 breaks with the first, second and last breaks captured in 1999, 2004 and 2008 respectively. Three breaks in Brent series using the Bayes Information Criteria were selected and this pointed out that Brent series has break points in 1999, 2005 and 2009. Numerous ARFIMA models were identified, selected using Akaike Information Criterion, estimated/check, in sample and out sample forecast was carried out using Box and Jenkins methodology. ARFIMA(1,0.47,2) is appropriate for West Texas Intermediate series while ARFIMA(2,0.09,0) is suitable for Brent series. One year in sample forecast indicates a small difference between the original series and the forecast results. The one year out sample forecast revealed a decline in future crude oil prices which may be good news to the consumers and bad news to the producers. Musa, Yakubu verfasserin aut Zubair, Umar A. verfasserin aut Saidu, Ahmed S. verfasserin aut Enthalten in CBN journal of applied statistics Abuja : Central Bank of Nigeria, 2012 6(2015), 2 vom: Dez., Seite 59-79 Online-Ressource (DE-627)858901404 (DE-600)2854997-1 (DE-576)469408812 2476-8472 nnns volume:6 year:2015 number:2 month:12 pages:59-79 http://hdl.handle.net/10419/142106 Resolving-System Volltext http://www.cenbank.org/Out/2016/SD/ARFIMA%20Modelling%20and%20Investigation%20of%20Structural%20Breaks%20in%20West%20Texas%20Intermediate%20and%20Brent%20Series.pdf Verlag Volltext GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2015 2 12 59-79 26 01 0206 1615695664 x1k 12-05-16 26 00 DE-206 56 ARFIMA model 26 00 DE-206 56 Structural breaks 26 00 DE-206 56 Long memory 26 00 DE-206 56 Local Whittle Estimator and Crude oil prices |
allfieldsGer |
10419/142106 hdl (DE-627)859169502 (DE-599)GBV859169502 DE-627 ger DE-627 rda eng C22 C50 , D12 jelc Jibrin, Sanusi A. verfasserin aut ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series Sanusi A. Jibrin, Yakubu Musa, Umar A. Zubair and Ahmed S. Saidu December 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The research used a long memory or Autoregressive Fractionally Integrated Moving Average model to study and forecast crude oil prices using weekly West Texas Intermediate and Brent series for the period 15/5/1987 to 20/12/2013. Fractional differencing Methods such as Local Whittle Estimator and Geweke and Porter-Hudak identified long memory characteristics in the crude oil prices. For WTI series, the Bayes Information Criteria selected 3 breaks with the first, second and last breaks captured in 1999, 2004 and 2008 respectively. Three breaks in Brent series using the Bayes Information Criteria were selected and this pointed out that Brent series has break points in 1999, 2005 and 2009. Numerous ARFIMA models were identified, selected using Akaike Information Criterion, estimated/check, in sample and out sample forecast was carried out using Box and Jenkins methodology. ARFIMA(1,0.47,2) is appropriate for West Texas Intermediate series while ARFIMA(2,0.09,0) is suitable for Brent series. One year in sample forecast indicates a small difference between the original series and the forecast results. The one year out sample forecast revealed a decline in future crude oil prices which may be good news to the consumers and bad news to the producers. Musa, Yakubu verfasserin aut Zubair, Umar A. verfasserin aut Saidu, Ahmed S. verfasserin aut Enthalten in CBN journal of applied statistics Abuja : Central Bank of Nigeria, 2012 6(2015), 2 vom: Dez., Seite 59-79 Online-Ressource (DE-627)858901404 (DE-600)2854997-1 (DE-576)469408812 2476-8472 nnns volume:6 year:2015 number:2 month:12 pages:59-79 http://hdl.handle.net/10419/142106 Resolving-System Volltext http://www.cenbank.org/Out/2016/SD/ARFIMA%20Modelling%20and%20Investigation%20of%20Structural%20Breaks%20in%20West%20Texas%20Intermediate%20and%20Brent%20Series.pdf Verlag Volltext GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2015 2 12 59-79 26 01 0206 1615695664 x1k 12-05-16 26 00 DE-206 56 ARFIMA model 26 00 DE-206 56 Structural breaks 26 00 DE-206 56 Long memory 26 00 DE-206 56 Local Whittle Estimator and Crude oil prices |
allfieldsSound |
10419/142106 hdl (DE-627)859169502 (DE-599)GBV859169502 DE-627 ger DE-627 rda eng C22 C50 , D12 jelc Jibrin, Sanusi A. verfasserin aut ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series Sanusi A. Jibrin, Yakubu Musa, Umar A. Zubair and Ahmed S. Saidu December 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The research used a long memory or Autoregressive Fractionally Integrated Moving Average model to study and forecast crude oil prices using weekly West Texas Intermediate and Brent series for the period 15/5/1987 to 20/12/2013. Fractional differencing Methods such as Local Whittle Estimator and Geweke and Porter-Hudak identified long memory characteristics in the crude oil prices. For WTI series, the Bayes Information Criteria selected 3 breaks with the first, second and last breaks captured in 1999, 2004 and 2008 respectively. Three breaks in Brent series using the Bayes Information Criteria were selected and this pointed out that Brent series has break points in 1999, 2005 and 2009. Numerous ARFIMA models were identified, selected using Akaike Information Criterion, estimated/check, in sample and out sample forecast was carried out using Box and Jenkins methodology. ARFIMA(1,0.47,2) is appropriate for West Texas Intermediate series while ARFIMA(2,0.09,0) is suitable for Brent series. One year in sample forecast indicates a small difference between the original series and the forecast results. The one year out sample forecast revealed a decline in future crude oil prices which may be good news to the consumers and bad news to the producers. Musa, Yakubu verfasserin aut Zubair, Umar A. verfasserin aut Saidu, Ahmed S. verfasserin aut Enthalten in CBN journal of applied statistics Abuja : Central Bank of Nigeria, 2012 6(2015), 2 vom: Dez., Seite 59-79 Online-Ressource (DE-627)858901404 (DE-600)2854997-1 (DE-576)469408812 2476-8472 nnns volume:6 year:2015 number:2 month:12 pages:59-79 http://hdl.handle.net/10419/142106 Resolving-System Volltext http://www.cenbank.org/Out/2016/SD/ARFIMA%20Modelling%20and%20Investigation%20of%20Structural%20Breaks%20in%20West%20Texas%20Intermediate%20and%20Brent%20Series.pdf Verlag Volltext GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2015 2 12 59-79 26 01 0206 1615695664 x1k 12-05-16 26 00 DE-206 56 ARFIMA model 26 00 DE-206 56 Structural breaks 26 00 DE-206 56 Long memory 26 00 DE-206 56 Local Whittle Estimator and Crude oil prices |
language |
English |
source |
Enthalten in CBN journal of applied statistics 6(2015), 2 vom: Dez., Seite 59-79 volume:6 year:2015 number:2 month:12 pages:59-79 |
sourceStr |
Enthalten in CBN journal of applied statistics 6(2015), 2 vom: Dez., Seite 59-79 volume:6 year:2015 number:2 month:12 pages:59-79 |
format_phy_str_mv |
Article |
building |
26:1 |
institution |
findex.gbv.de |
selectbib_iln_str_mv |
26@1k |
sw_local_iln_str_mv |
26:ARFIMA model DE-206:ARFIMA model 26:Structural breaks DE-206:Structural breaks 26:Long memory DE-206:Long memory 26:Local Whittle Estimator and Crude oil prices DE-206:Local Whittle Estimator and Crude oil prices |
isfreeaccess_bool |
false |
container_title |
CBN journal of applied statistics |
authorswithroles_txt_mv |
Jibrin, Sanusi A. @@aut@@ Musa, Yakubu @@aut@@ Zubair, Umar A. @@aut@@ Saidu, Ahmed S. @@aut@@ |
publishDateDaySort_date |
2015-12-01T00:00:00Z |
hierarchy_top_id |
858901404 |
id |
859169502 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">859169502</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20160610150356.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">160512s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10419/142106</subfield><subfield code="2">hdl</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)859169502</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV859169502</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">C22</subfield><subfield code="a">C50 , D12</subfield><subfield code="2">jelc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jibrin, Sanusi A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series</subfield><subfield code="c">Sanusi A. Jibrin, Yakubu Musa, Umar A. Zubair and Ahmed S. Saidu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">December 2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The research used a long memory or Autoregressive Fractionally Integrated Moving Average model to study and forecast crude oil prices using weekly West Texas Intermediate and Brent series for the period 15/5/1987 to 20/12/2013. Fractional differencing Methods such as Local Whittle Estimator and Geweke and Porter-Hudak identified long memory characteristics in the crude oil prices. For WTI series, the Bayes Information Criteria selected 3 breaks with the first, second and last breaks captured in 1999, 2004 and 2008 respectively. Three breaks in Brent series using the Bayes Information Criteria were selected and this pointed out that Brent series has break points in 1999, 2005 and 2009. Numerous ARFIMA models were identified, selected using Akaike Information Criterion, estimated/check, in sample and out sample forecast was carried out using Box and Jenkins methodology. ARFIMA(1,0.47,2) is appropriate for West Texas Intermediate series while ARFIMA(2,0.09,0) is suitable for Brent series. One year in sample forecast indicates a small difference between the original series and the forecast results. The one year out sample forecast revealed a decline in future crude oil prices which may be good news to the consumers and bad news to the producers.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Musa, Yakubu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zubair, Umar A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saidu, Ahmed S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">CBN journal of applied statistics</subfield><subfield code="d">Abuja : Central Bank of Nigeria, 2012</subfield><subfield code="g">6(2015), 2 vom: Dez., Seite 59-79</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)858901404</subfield><subfield code="w">(DE-600)2854997-1</subfield><subfield code="w">(DE-576)469408812</subfield><subfield code="x">2476-8472</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:59-79</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://hdl.handle.net/10419/142106</subfield><subfield code="x">Resolving-System</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.cenbank.org/Out/2016/SD/ARFIMA%20Modelling%20and%20Investigation%20of%20Structural%20Breaks%20in%20West%20Texas%20Intermediate%20and%20Brent%20Series.pdf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="c">12</subfield><subfield code="h">59-79</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">01</subfield><subfield code="x">0206</subfield><subfield code="b">1615695664</subfield><subfield code="y">x1k</subfield><subfield code="z">12-05-16</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="8">56</subfield><subfield code="a">ARFIMA model</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="8">56</subfield><subfield code="a">Structural breaks</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="8">56</subfield><subfield code="a">Long memory</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="8">56</subfield><subfield code="a">Local Whittle Estimator and Crude oil prices</subfield></datafield></record></collection>
|
author |
Jibrin, Sanusi A. |
spellingShingle |
Jibrin, Sanusi A. jelc C22 26 ARFIMA model 26 Structural breaks 26 Long memory 26 Local Whittle Estimator and Crude oil prices ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series |
authorStr |
Jibrin, Sanusi A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)858901404 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
KXP GVK SWB |
remote_str |
true |
last_changed_iln_str_mv |
26@12-05-16 |
illustrated |
Not Illustrated |
issn |
2476-8472 |
topic_title |
C22 C50 , D12 jelc 26 00 DE-206 56 ARFIMA model 26 00 DE-206 56 Structural breaks 26 00 DE-206 56 Long memory 26 00 DE-206 56 Local Whittle Estimator and Crude oil prices ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series Sanusi A. Jibrin, Yakubu Musa, Umar A. Zubair and Ahmed S. Saidu |
topic |
jelc C22 26 ARFIMA model 26 Structural breaks 26 Long memory 26 Local Whittle Estimator and Crude oil prices |
topic_unstemmed |
jelc C22 26 ARFIMA model 26 Structural breaks 26 Long memory 26 Local Whittle Estimator and Crude oil prices |
topic_browse |
jelc C22 26 ARFIMA model 26 Structural breaks 26 Long memory 26 Local Whittle Estimator and Crude oil prices |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
CBN journal of applied statistics |
hierarchy_parent_id |
858901404 |
hierarchy_top_title |
CBN journal of applied statistics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)858901404 (DE-600)2854997-1 (DE-576)469408812 |
title |
ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series |
ctrlnum |
(DE-627)859169502 (DE-599)GBV859169502 |
title_full |
ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series Sanusi A. Jibrin, Yakubu Musa, Umar A. Zubair and Ahmed S. Saidu |
author_sort |
Jibrin, Sanusi A. |
journal |
CBN journal of applied statistics |
journalStr |
CBN journal of applied statistics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
59 |
author_browse |
Jibrin, Sanusi A. Musa, Yakubu Zubair, Umar A. Saidu, Ahmed S. |
selectkey |
26:x |
container_volume |
6 |
class |
C22 C50 , D12 jelc |
format_se |
Elektronische Aufsätze |
author-letter |
Jibrin, Sanusi A. |
author2-role |
verfasserin |
title_sort |
arfima modelling and investigation of structural break(s) in west texas intermediate and brent series |
title_auth |
ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series |
abstract |
The research used a long memory or Autoregressive Fractionally Integrated Moving Average model to study and forecast crude oil prices using weekly West Texas Intermediate and Brent series for the period 15/5/1987 to 20/12/2013. Fractional differencing Methods such as Local Whittle Estimator and Geweke and Porter-Hudak identified long memory characteristics in the crude oil prices. For WTI series, the Bayes Information Criteria selected 3 breaks with the first, second and last breaks captured in 1999, 2004 and 2008 respectively. Three breaks in Brent series using the Bayes Information Criteria were selected and this pointed out that Brent series has break points in 1999, 2005 and 2009. Numerous ARFIMA models were identified, selected using Akaike Information Criterion, estimated/check, in sample and out sample forecast was carried out using Box and Jenkins methodology. ARFIMA(1,0.47,2) is appropriate for West Texas Intermediate series while ARFIMA(2,0.09,0) is suitable for Brent series. One year in sample forecast indicates a small difference between the original series and the forecast results. The one year out sample forecast revealed a decline in future crude oil prices which may be good news to the consumers and bad news to the producers. |
abstractGer |
The research used a long memory or Autoregressive Fractionally Integrated Moving Average model to study and forecast crude oil prices using weekly West Texas Intermediate and Brent series for the period 15/5/1987 to 20/12/2013. Fractional differencing Methods such as Local Whittle Estimator and Geweke and Porter-Hudak identified long memory characteristics in the crude oil prices. For WTI series, the Bayes Information Criteria selected 3 breaks with the first, second and last breaks captured in 1999, 2004 and 2008 respectively. Three breaks in Brent series using the Bayes Information Criteria were selected and this pointed out that Brent series has break points in 1999, 2005 and 2009. Numerous ARFIMA models were identified, selected using Akaike Information Criterion, estimated/check, in sample and out sample forecast was carried out using Box and Jenkins methodology. ARFIMA(1,0.47,2) is appropriate for West Texas Intermediate series while ARFIMA(2,0.09,0) is suitable for Brent series. One year in sample forecast indicates a small difference between the original series and the forecast results. The one year out sample forecast revealed a decline in future crude oil prices which may be good news to the consumers and bad news to the producers. |
abstract_unstemmed |
The research used a long memory or Autoregressive Fractionally Integrated Moving Average model to study and forecast crude oil prices using weekly West Texas Intermediate and Brent series for the period 15/5/1987 to 20/12/2013. Fractional differencing Methods such as Local Whittle Estimator and Geweke and Porter-Hudak identified long memory characteristics in the crude oil prices. For WTI series, the Bayes Information Criteria selected 3 breaks with the first, second and last breaks captured in 1999, 2004 and 2008 respectively. Three breaks in Brent series using the Bayes Information Criteria were selected and this pointed out that Brent series has break points in 1999, 2005 and 2009. Numerous ARFIMA models were identified, selected using Akaike Information Criterion, estimated/check, in sample and out sample forecast was carried out using Box and Jenkins methodology. ARFIMA(1,0.47,2) is appropriate for West Texas Intermediate series while ARFIMA(2,0.09,0) is suitable for Brent series. One year in sample forecast indicates a small difference between the original series and the forecast results. The one year out sample forecast revealed a decline in future crude oil prices which may be good news to the consumers and bad news to the producers. |
collection_details |
GBV_USEFLAG_U GBV_ILN_26 ISIL_DE-206 SYSFLAG_1 GBV_KXP GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series |
url |
http://hdl.handle.net/10419/142106 http://www.cenbank.org/Out/2016/SD/ARFIMA%20Modelling%20and%20Investigation%20of%20Structural%20Breaks%20in%20West%20Texas%20Intermediate%20and%20Brent%20Series.pdf |
ausleihindikator_str_mv |
26 |
remote_bool |
true |
author2 |
Musa, Yakubu Zubair, Umar A. Saidu, Ahmed S. |
author2Str |
Musa, Yakubu Zubair, Umar A. Saidu, Ahmed S. |
ppnlink |
858901404 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
up_date |
2024-07-04T14:49:21.482Z |
_version_ |
1803660360663695360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">859169502</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20160610150356.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">160512s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10419/142106</subfield><subfield code="2">hdl</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)859169502</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV859169502</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">C22</subfield><subfield code="a">C50 , D12</subfield><subfield code="2">jelc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jibrin, Sanusi A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ARFIMA modelling and investigation of structural break(s) in West Texas Intermediate and Brent series</subfield><subfield code="c">Sanusi A. Jibrin, Yakubu Musa, Umar A. Zubair and Ahmed S. Saidu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">December 2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The research used a long memory or Autoregressive Fractionally Integrated Moving Average model to study and forecast crude oil prices using weekly West Texas Intermediate and Brent series for the period 15/5/1987 to 20/12/2013. Fractional differencing Methods such as Local Whittle Estimator and Geweke and Porter-Hudak identified long memory characteristics in the crude oil prices. For WTI series, the Bayes Information Criteria selected 3 breaks with the first, second and last breaks captured in 1999, 2004 and 2008 respectively. Three breaks in Brent series using the Bayes Information Criteria were selected and this pointed out that Brent series has break points in 1999, 2005 and 2009. Numerous ARFIMA models were identified, selected using Akaike Information Criterion, estimated/check, in sample and out sample forecast was carried out using Box and Jenkins methodology. ARFIMA(1,0.47,2) is appropriate for West Texas Intermediate series while ARFIMA(2,0.09,0) is suitable for Brent series. One year in sample forecast indicates a small difference between the original series and the forecast results. The one year out sample forecast revealed a decline in future crude oil prices which may be good news to the consumers and bad news to the producers.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Musa, Yakubu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zubair, Umar A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saidu, Ahmed S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">CBN journal of applied statistics</subfield><subfield code="d">Abuja : Central Bank of Nigeria, 2012</subfield><subfield code="g">6(2015), 2 vom: Dez., Seite 59-79</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)858901404</subfield><subfield code="w">(DE-600)2854997-1</subfield><subfield code="w">(DE-576)469408812</subfield><subfield code="x">2476-8472</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:59-79</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://hdl.handle.net/10419/142106</subfield><subfield code="x">Resolving-System</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.cenbank.org/Out/2016/SD/ARFIMA%20Modelling%20and%20Investigation%20of%20Structural%20Breaks%20in%20West%20Texas%20Intermediate%20and%20Brent%20Series.pdf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ISIL_DE-206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_KXP</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="c">12</subfield><subfield code="h">59-79</subfield></datafield><datafield tag="980" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">01</subfield><subfield code="x">0206</subfield><subfield code="b">1615695664</subfield><subfield code="y">x1k</subfield><subfield code="z">12-05-16</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="8">56</subfield><subfield code="a">ARFIMA model</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="8">56</subfield><subfield code="a">Structural breaks</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="8">56</subfield><subfield code="a">Long memory</subfield></datafield><datafield tag="982" ind1=" " ind2=" "><subfield code="2">26</subfield><subfield code="1">00</subfield><subfield code="x">DE-206</subfield><subfield code="8">56</subfield><subfield code="a">Local Whittle Estimator and Crude oil prices</subfield></datafield></record></collection>
|
score |
7.400504 |