Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction!
The formation of new subduction zones is a key element of plate tectonics and the Wilson cycle, and many different controlling mechanisms have been proposed to initiate subduction. Here, we provide a brief overview of the known scenarios of subduction initiation in intra-oceanic and ocean-continent...
Ausführliche Beschreibung
Autor*in: |
Alexander Koptev [verfasserIn] Sierd Cloetingh [verfasserIn] Taras Gerya [verfasserIn] Pietro Sternai [verfasserIn] Svetlana Botsyun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Earth Science - Frontiers Media S.A., 2014, 10(2022) |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/feart.2022.1097922 |
---|
Katalog-ID: |
DOAJ001087673 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ001087673 | ||
003 | DE-627 | ||
005 | 20230307021310.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/feart.2022.1097922 |2 doi | |
035 | |a (DE-627)DOAJ001087673 | ||
035 | |a (DE-599)DOAJ60a9935acca64eb083d5888fd7ac54c0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Alexander Koptev |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction! |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The formation of new subduction zones is a key element of plate tectonics and the Wilson cycle, and many different controlling mechanisms have been proposed to initiate subduction. Here, we provide a brief overview of the known scenarios of subduction initiation in intra-oceanic and ocean-continent tectonic settings. Intra-oceanic subduction is most commonly associated with mechanical heterogeneities within the oceanic lithosphere, such as pre-existing fracture zones, spreading ridges, and transform faults. Numerous and well-recognized examples of new active subduction zones formed in intra-oceanic environments during the Cenozoic, suggesting that the initiation of ocean-ocean subduction must be a routine process that occurs “easily and frequently” in the mode of plate tectonics currently operating on Earth. On the contrary, the most traditional mechanisms for the establishment of classic self-sustaining ocean-continent subduction—passive margin collapse and subduction transference—are surprisingly rare in observations and difficult to reproduce in numerical models. Two alternative scenarios—polarity reversal and lateral propagation-induced subduction initiation—are in contrast much better documented in nature and experimentally. However, switching of subduction polarity due to arc-continent collision and lateral transmission of subducting plate boundaries are both inextricably linked to pre-existing intra-oceanic convergence. We, therefore, conclude that the onset of classic ocean-continent subduction zones is possible only through the transition from a former intra-oceanic subduction system. This transition is likely facilitated by the ductile damage accumulation and stress concentration across the aging continental margin. From this perspective, the future closure of the Atlantic Ocean can be viewed as an archetypal example of the role of transitional process between intra-oceanic subduction (Lesser Antilles) and the development of a new subduction zone at a passive continental margin (eastern North America). | ||
650 | 4 | |a subduction initiation | |
650 | 4 | |a transform fault collapse | |
650 | 4 | |a passive margin collapse | |
650 | 4 | |a subduction transference | |
650 | 4 | |a polarity reversal | |
650 | 4 | |a lateral propagation | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Sierd Cloetingh |e verfasserin |4 aut | |
700 | 0 | |a Taras Gerya |e verfasserin |4 aut | |
700 | 0 | |a Pietro Sternai |e verfasserin |4 aut | |
700 | 0 | |a Svetlana Botsyun |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Earth Science |d Frontiers Media S.A., 2014 |g 10(2022) |w (DE-627)771399731 |w (DE-600)2741235-0 |x 22966463 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/feart.2022.1097922 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/60a9935acca64eb083d5888fd7ac54c0 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/feart.2022.1097922/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2296-6463 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |
author_variant |
a k ak s c sc t g tg p s ps s b sb |
---|---|
matchkey_str |
article:22966463:2022----::cacnietudcinantentaewtotrcdn |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3389/feart.2022.1097922 doi (DE-627)DOAJ001087673 (DE-599)DOAJ60a9935acca64eb083d5888fd7ac54c0 DE-627 ger DE-627 rakwb eng Alexander Koptev verfasserin aut Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction! 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The formation of new subduction zones is a key element of plate tectonics and the Wilson cycle, and many different controlling mechanisms have been proposed to initiate subduction. Here, we provide a brief overview of the known scenarios of subduction initiation in intra-oceanic and ocean-continent tectonic settings. Intra-oceanic subduction is most commonly associated with mechanical heterogeneities within the oceanic lithosphere, such as pre-existing fracture zones, spreading ridges, and transform faults. Numerous and well-recognized examples of new active subduction zones formed in intra-oceanic environments during the Cenozoic, suggesting that the initiation of ocean-ocean subduction must be a routine process that occurs “easily and frequently” in the mode of plate tectonics currently operating on Earth. On the contrary, the most traditional mechanisms for the establishment of classic self-sustaining ocean-continent subduction—passive margin collapse and subduction transference—are surprisingly rare in observations and difficult to reproduce in numerical models. Two alternative scenarios—polarity reversal and lateral propagation-induced subduction initiation—are in contrast much better documented in nature and experimentally. However, switching of subduction polarity due to arc-continent collision and lateral transmission of subducting plate boundaries are both inextricably linked to pre-existing intra-oceanic convergence. We, therefore, conclude that the onset of classic ocean-continent subduction zones is possible only through the transition from a former intra-oceanic subduction system. This transition is likely facilitated by the ductile damage accumulation and stress concentration across the aging continental margin. From this perspective, the future closure of the Atlantic Ocean can be viewed as an archetypal example of the role of transitional process between intra-oceanic subduction (Lesser Antilles) and the development of a new subduction zone at a passive continental margin (eastern North America). subduction initiation transform fault collapse passive margin collapse subduction transference polarity reversal lateral propagation Science Q Sierd Cloetingh verfasserin aut Taras Gerya verfasserin aut Pietro Sternai verfasserin aut Svetlana Botsyun verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 10(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:10 year:2022 https://doi.org/10.3389/feart.2022.1097922 kostenfrei https://doaj.org/article/60a9935acca64eb083d5888fd7ac54c0 kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2022.1097922/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
spelling |
10.3389/feart.2022.1097922 doi (DE-627)DOAJ001087673 (DE-599)DOAJ60a9935acca64eb083d5888fd7ac54c0 DE-627 ger DE-627 rakwb eng Alexander Koptev verfasserin aut Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction! 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The formation of new subduction zones is a key element of plate tectonics and the Wilson cycle, and many different controlling mechanisms have been proposed to initiate subduction. Here, we provide a brief overview of the known scenarios of subduction initiation in intra-oceanic and ocean-continent tectonic settings. Intra-oceanic subduction is most commonly associated with mechanical heterogeneities within the oceanic lithosphere, such as pre-existing fracture zones, spreading ridges, and transform faults. Numerous and well-recognized examples of new active subduction zones formed in intra-oceanic environments during the Cenozoic, suggesting that the initiation of ocean-ocean subduction must be a routine process that occurs “easily and frequently” in the mode of plate tectonics currently operating on Earth. On the contrary, the most traditional mechanisms for the establishment of classic self-sustaining ocean-continent subduction—passive margin collapse and subduction transference—are surprisingly rare in observations and difficult to reproduce in numerical models. Two alternative scenarios—polarity reversal and lateral propagation-induced subduction initiation—are in contrast much better documented in nature and experimentally. However, switching of subduction polarity due to arc-continent collision and lateral transmission of subducting plate boundaries are both inextricably linked to pre-existing intra-oceanic convergence. We, therefore, conclude that the onset of classic ocean-continent subduction zones is possible only through the transition from a former intra-oceanic subduction system. This transition is likely facilitated by the ductile damage accumulation and stress concentration across the aging continental margin. From this perspective, the future closure of the Atlantic Ocean can be viewed as an archetypal example of the role of transitional process between intra-oceanic subduction (Lesser Antilles) and the development of a new subduction zone at a passive continental margin (eastern North America). subduction initiation transform fault collapse passive margin collapse subduction transference polarity reversal lateral propagation Science Q Sierd Cloetingh verfasserin aut Taras Gerya verfasserin aut Pietro Sternai verfasserin aut Svetlana Botsyun verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 10(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:10 year:2022 https://doi.org/10.3389/feart.2022.1097922 kostenfrei https://doaj.org/article/60a9935acca64eb083d5888fd7ac54c0 kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2022.1097922/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfields_unstemmed |
10.3389/feart.2022.1097922 doi (DE-627)DOAJ001087673 (DE-599)DOAJ60a9935acca64eb083d5888fd7ac54c0 DE-627 ger DE-627 rakwb eng Alexander Koptev verfasserin aut Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction! 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The formation of new subduction zones is a key element of plate tectonics and the Wilson cycle, and many different controlling mechanisms have been proposed to initiate subduction. Here, we provide a brief overview of the known scenarios of subduction initiation in intra-oceanic and ocean-continent tectonic settings. Intra-oceanic subduction is most commonly associated with mechanical heterogeneities within the oceanic lithosphere, such as pre-existing fracture zones, spreading ridges, and transform faults. Numerous and well-recognized examples of new active subduction zones formed in intra-oceanic environments during the Cenozoic, suggesting that the initiation of ocean-ocean subduction must be a routine process that occurs “easily and frequently” in the mode of plate tectonics currently operating on Earth. On the contrary, the most traditional mechanisms for the establishment of classic self-sustaining ocean-continent subduction—passive margin collapse and subduction transference—are surprisingly rare in observations and difficult to reproduce in numerical models. Two alternative scenarios—polarity reversal and lateral propagation-induced subduction initiation—are in contrast much better documented in nature and experimentally. However, switching of subduction polarity due to arc-continent collision and lateral transmission of subducting plate boundaries are both inextricably linked to pre-existing intra-oceanic convergence. We, therefore, conclude that the onset of classic ocean-continent subduction zones is possible only through the transition from a former intra-oceanic subduction system. This transition is likely facilitated by the ductile damage accumulation and stress concentration across the aging continental margin. From this perspective, the future closure of the Atlantic Ocean can be viewed as an archetypal example of the role of transitional process between intra-oceanic subduction (Lesser Antilles) and the development of a new subduction zone at a passive continental margin (eastern North America). subduction initiation transform fault collapse passive margin collapse subduction transference polarity reversal lateral propagation Science Q Sierd Cloetingh verfasserin aut Taras Gerya verfasserin aut Pietro Sternai verfasserin aut Svetlana Botsyun verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 10(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:10 year:2022 https://doi.org/10.3389/feart.2022.1097922 kostenfrei https://doaj.org/article/60a9935acca64eb083d5888fd7ac54c0 kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2022.1097922/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfieldsGer |
10.3389/feart.2022.1097922 doi (DE-627)DOAJ001087673 (DE-599)DOAJ60a9935acca64eb083d5888fd7ac54c0 DE-627 ger DE-627 rakwb eng Alexander Koptev verfasserin aut Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction! 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The formation of new subduction zones is a key element of plate tectonics and the Wilson cycle, and many different controlling mechanisms have been proposed to initiate subduction. Here, we provide a brief overview of the known scenarios of subduction initiation in intra-oceanic and ocean-continent tectonic settings. Intra-oceanic subduction is most commonly associated with mechanical heterogeneities within the oceanic lithosphere, such as pre-existing fracture zones, spreading ridges, and transform faults. Numerous and well-recognized examples of new active subduction zones formed in intra-oceanic environments during the Cenozoic, suggesting that the initiation of ocean-ocean subduction must be a routine process that occurs “easily and frequently” in the mode of plate tectonics currently operating on Earth. On the contrary, the most traditional mechanisms for the establishment of classic self-sustaining ocean-continent subduction—passive margin collapse and subduction transference—are surprisingly rare in observations and difficult to reproduce in numerical models. Two alternative scenarios—polarity reversal and lateral propagation-induced subduction initiation—are in contrast much better documented in nature and experimentally. However, switching of subduction polarity due to arc-continent collision and lateral transmission of subducting plate boundaries are both inextricably linked to pre-existing intra-oceanic convergence. We, therefore, conclude that the onset of classic ocean-continent subduction zones is possible only through the transition from a former intra-oceanic subduction system. This transition is likely facilitated by the ductile damage accumulation and stress concentration across the aging continental margin. From this perspective, the future closure of the Atlantic Ocean can be viewed as an archetypal example of the role of transitional process between intra-oceanic subduction (Lesser Antilles) and the development of a new subduction zone at a passive continental margin (eastern North America). subduction initiation transform fault collapse passive margin collapse subduction transference polarity reversal lateral propagation Science Q Sierd Cloetingh verfasserin aut Taras Gerya verfasserin aut Pietro Sternai verfasserin aut Svetlana Botsyun verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 10(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:10 year:2022 https://doi.org/10.3389/feart.2022.1097922 kostenfrei https://doaj.org/article/60a9935acca64eb083d5888fd7ac54c0 kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2022.1097922/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfieldsSound |
10.3389/feart.2022.1097922 doi (DE-627)DOAJ001087673 (DE-599)DOAJ60a9935acca64eb083d5888fd7ac54c0 DE-627 ger DE-627 rakwb eng Alexander Koptev verfasserin aut Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction! 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The formation of new subduction zones is a key element of plate tectonics and the Wilson cycle, and many different controlling mechanisms have been proposed to initiate subduction. Here, we provide a brief overview of the known scenarios of subduction initiation in intra-oceanic and ocean-continent tectonic settings. Intra-oceanic subduction is most commonly associated with mechanical heterogeneities within the oceanic lithosphere, such as pre-existing fracture zones, spreading ridges, and transform faults. Numerous and well-recognized examples of new active subduction zones formed in intra-oceanic environments during the Cenozoic, suggesting that the initiation of ocean-ocean subduction must be a routine process that occurs “easily and frequently” in the mode of plate tectonics currently operating on Earth. On the contrary, the most traditional mechanisms for the establishment of classic self-sustaining ocean-continent subduction—passive margin collapse and subduction transference—are surprisingly rare in observations and difficult to reproduce in numerical models. Two alternative scenarios—polarity reversal and lateral propagation-induced subduction initiation—are in contrast much better documented in nature and experimentally. However, switching of subduction polarity due to arc-continent collision and lateral transmission of subducting plate boundaries are both inextricably linked to pre-existing intra-oceanic convergence. We, therefore, conclude that the onset of classic ocean-continent subduction zones is possible only through the transition from a former intra-oceanic subduction system. This transition is likely facilitated by the ductile damage accumulation and stress concentration across the aging continental margin. From this perspective, the future closure of the Atlantic Ocean can be viewed as an archetypal example of the role of transitional process between intra-oceanic subduction (Lesser Antilles) and the development of a new subduction zone at a passive continental margin (eastern North America). subduction initiation transform fault collapse passive margin collapse subduction transference polarity reversal lateral propagation Science Q Sierd Cloetingh verfasserin aut Taras Gerya verfasserin aut Pietro Sternai verfasserin aut Svetlana Botsyun verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 10(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:10 year:2022 https://doi.org/10.3389/feart.2022.1097922 kostenfrei https://doaj.org/article/60a9935acca64eb083d5888fd7ac54c0 kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2022.1097922/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
language |
English |
source |
In Frontiers in Earth Science 10(2022) volume:10 year:2022 |
sourceStr |
In Frontiers in Earth Science 10(2022) volume:10 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
subduction initiation transform fault collapse passive margin collapse subduction transference polarity reversal lateral propagation Science Q |
isfreeaccess_bool |
true |
container_title |
Frontiers in Earth Science |
authorswithroles_txt_mv |
Alexander Koptev @@aut@@ Sierd Cloetingh @@aut@@ Taras Gerya @@aut@@ Pietro Sternai @@aut@@ Svetlana Botsyun @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
771399731 |
id |
DOAJ001087673 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ001087673</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307021310.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/feart.2022.1097922</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ001087673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ60a9935acca64eb083d5888fd7ac54c0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alexander Koptev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction!</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The formation of new subduction zones is a key element of plate tectonics and the Wilson cycle, and many different controlling mechanisms have been proposed to initiate subduction. Here, we provide a brief overview of the known scenarios of subduction initiation in intra-oceanic and ocean-continent tectonic settings. Intra-oceanic subduction is most commonly associated with mechanical heterogeneities within the oceanic lithosphere, such as pre-existing fracture zones, spreading ridges, and transform faults. Numerous and well-recognized examples of new active subduction zones formed in intra-oceanic environments during the Cenozoic, suggesting that the initiation of ocean-ocean subduction must be a routine process that occurs “easily and frequently” in the mode of plate tectonics currently operating on Earth. On the contrary, the most traditional mechanisms for the establishment of classic self-sustaining ocean-continent subduction—passive margin collapse and subduction transference—are surprisingly rare in observations and difficult to reproduce in numerical models. Two alternative scenarios—polarity reversal and lateral propagation-induced subduction initiation—are in contrast much better documented in nature and experimentally. However, switching of subduction polarity due to arc-continent collision and lateral transmission of subducting plate boundaries are both inextricably linked to pre-existing intra-oceanic convergence. We, therefore, conclude that the onset of classic ocean-continent subduction zones is possible only through the transition from a former intra-oceanic subduction system. This transition is likely facilitated by the ductile damage accumulation and stress concentration across the aging continental margin. From this perspective, the future closure of the Atlantic Ocean can be viewed as an archetypal example of the role of transitional process between intra-oceanic subduction (Lesser Antilles) and the development of a new subduction zone at a passive continental margin (eastern North America).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subduction initiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transform fault collapse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passive margin collapse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subduction transference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polarity reversal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lateral propagation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sierd Cloetingh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taras Gerya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pietro Sternai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Svetlana Botsyun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Earth Science</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2022)</subfield><subfield code="w">(DE-627)771399731</subfield><subfield code="w">(DE-600)2741235-0</subfield><subfield code="x">22966463</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/feart.2022.1097922</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/60a9935acca64eb083d5888fd7ac54c0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/feart.2022.1097922/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-6463</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
author |
Alexander Koptev |
spellingShingle |
Alexander Koptev misc subduction initiation misc transform fault collapse misc passive margin collapse misc subduction transference misc polarity reversal misc lateral propagation misc Science misc Q Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction! |
authorStr |
Alexander Koptev |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)771399731 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
22966463 |
topic_title |
Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction! subduction initiation transform fault collapse passive margin collapse subduction transference polarity reversal lateral propagation |
topic |
misc subduction initiation misc transform fault collapse misc passive margin collapse misc subduction transference misc polarity reversal misc lateral propagation misc Science misc Q |
topic_unstemmed |
misc subduction initiation misc transform fault collapse misc passive margin collapse misc subduction transference misc polarity reversal misc lateral propagation misc Science misc Q |
topic_browse |
misc subduction initiation misc transform fault collapse misc passive margin collapse misc subduction transference misc polarity reversal misc lateral propagation misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Earth Science |
hierarchy_parent_id |
771399731 |
hierarchy_top_title |
Frontiers in Earth Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)771399731 (DE-600)2741235-0 |
title |
Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction! |
ctrlnum |
(DE-627)DOAJ001087673 (DE-599)DOAJ60a9935acca64eb083d5888fd7ac54c0 |
title_full |
Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction! |
author_sort |
Alexander Koptev |
journal |
Frontiers in Earth Science |
journalStr |
Frontiers in Earth Science |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Alexander Koptev Sierd Cloetingh Taras Gerya Pietro Sternai Svetlana Botsyun |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Alexander Koptev |
doi_str_mv |
10.3389/feart.2022.1097922 |
author2-role |
verfasserin |
title_sort |
ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction! |
title_auth |
Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction! |
abstract |
The formation of new subduction zones is a key element of plate tectonics and the Wilson cycle, and many different controlling mechanisms have been proposed to initiate subduction. Here, we provide a brief overview of the known scenarios of subduction initiation in intra-oceanic and ocean-continent tectonic settings. Intra-oceanic subduction is most commonly associated with mechanical heterogeneities within the oceanic lithosphere, such as pre-existing fracture zones, spreading ridges, and transform faults. Numerous and well-recognized examples of new active subduction zones formed in intra-oceanic environments during the Cenozoic, suggesting that the initiation of ocean-ocean subduction must be a routine process that occurs “easily and frequently” in the mode of plate tectonics currently operating on Earth. On the contrary, the most traditional mechanisms for the establishment of classic self-sustaining ocean-continent subduction—passive margin collapse and subduction transference—are surprisingly rare in observations and difficult to reproduce in numerical models. Two alternative scenarios—polarity reversal and lateral propagation-induced subduction initiation—are in contrast much better documented in nature and experimentally. However, switching of subduction polarity due to arc-continent collision and lateral transmission of subducting plate boundaries are both inextricably linked to pre-existing intra-oceanic convergence. We, therefore, conclude that the onset of classic ocean-continent subduction zones is possible only through the transition from a former intra-oceanic subduction system. This transition is likely facilitated by the ductile damage accumulation and stress concentration across the aging continental margin. From this perspective, the future closure of the Atlantic Ocean can be viewed as an archetypal example of the role of transitional process between intra-oceanic subduction (Lesser Antilles) and the development of a new subduction zone at a passive continental margin (eastern North America). |
abstractGer |
The formation of new subduction zones is a key element of plate tectonics and the Wilson cycle, and many different controlling mechanisms have been proposed to initiate subduction. Here, we provide a brief overview of the known scenarios of subduction initiation in intra-oceanic and ocean-continent tectonic settings. Intra-oceanic subduction is most commonly associated with mechanical heterogeneities within the oceanic lithosphere, such as pre-existing fracture zones, spreading ridges, and transform faults. Numerous and well-recognized examples of new active subduction zones formed in intra-oceanic environments during the Cenozoic, suggesting that the initiation of ocean-ocean subduction must be a routine process that occurs “easily and frequently” in the mode of plate tectonics currently operating on Earth. On the contrary, the most traditional mechanisms for the establishment of classic self-sustaining ocean-continent subduction—passive margin collapse and subduction transference—are surprisingly rare in observations and difficult to reproduce in numerical models. Two alternative scenarios—polarity reversal and lateral propagation-induced subduction initiation—are in contrast much better documented in nature and experimentally. However, switching of subduction polarity due to arc-continent collision and lateral transmission of subducting plate boundaries are both inextricably linked to pre-existing intra-oceanic convergence. We, therefore, conclude that the onset of classic ocean-continent subduction zones is possible only through the transition from a former intra-oceanic subduction system. This transition is likely facilitated by the ductile damage accumulation and stress concentration across the aging continental margin. From this perspective, the future closure of the Atlantic Ocean can be viewed as an archetypal example of the role of transitional process between intra-oceanic subduction (Lesser Antilles) and the development of a new subduction zone at a passive continental margin (eastern North America). |
abstract_unstemmed |
The formation of new subduction zones is a key element of plate tectonics and the Wilson cycle, and many different controlling mechanisms have been proposed to initiate subduction. Here, we provide a brief overview of the known scenarios of subduction initiation in intra-oceanic and ocean-continent tectonic settings. Intra-oceanic subduction is most commonly associated with mechanical heterogeneities within the oceanic lithosphere, such as pre-existing fracture zones, spreading ridges, and transform faults. Numerous and well-recognized examples of new active subduction zones formed in intra-oceanic environments during the Cenozoic, suggesting that the initiation of ocean-ocean subduction must be a routine process that occurs “easily and frequently” in the mode of plate tectonics currently operating on Earth. On the contrary, the most traditional mechanisms for the establishment of classic self-sustaining ocean-continent subduction—passive margin collapse and subduction transference—are surprisingly rare in observations and difficult to reproduce in numerical models. Two alternative scenarios—polarity reversal and lateral propagation-induced subduction initiation—are in contrast much better documented in nature and experimentally. However, switching of subduction polarity due to arc-continent collision and lateral transmission of subducting plate boundaries are both inextricably linked to pre-existing intra-oceanic convergence. We, therefore, conclude that the onset of classic ocean-continent subduction zones is possible only through the transition from a former intra-oceanic subduction system. This transition is likely facilitated by the ductile damage accumulation and stress concentration across the aging continental margin. From this perspective, the future closure of the Atlantic Ocean can be viewed as an archetypal example of the role of transitional process between intra-oceanic subduction (Lesser Antilles) and the development of a new subduction zone at a passive continental margin (eastern North America). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction! |
url |
https://doi.org/10.3389/feart.2022.1097922 https://doaj.org/article/60a9935acca64eb083d5888fd7ac54c0 https://www.frontiersin.org/articles/10.3389/feart.2022.1097922/full https://doaj.org/toc/2296-6463 |
remote_bool |
true |
author2 |
Sierd Cloetingh Taras Gerya Pietro Sternai Svetlana Botsyun |
author2Str |
Sierd Cloetingh Taras Gerya Pietro Sternai Svetlana Botsyun |
ppnlink |
771399731 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/feart.2022.1097922 |
up_date |
2024-07-03T18:20:39.445Z |
_version_ |
1803583057506074624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ001087673</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307021310.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/feart.2022.1097922</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ001087673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ60a9935acca64eb083d5888fd7ac54c0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alexander Koptev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction!</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The formation of new subduction zones is a key element of plate tectonics and the Wilson cycle, and many different controlling mechanisms have been proposed to initiate subduction. Here, we provide a brief overview of the known scenarios of subduction initiation in intra-oceanic and ocean-continent tectonic settings. Intra-oceanic subduction is most commonly associated with mechanical heterogeneities within the oceanic lithosphere, such as pre-existing fracture zones, spreading ridges, and transform faults. Numerous and well-recognized examples of new active subduction zones formed in intra-oceanic environments during the Cenozoic, suggesting that the initiation of ocean-ocean subduction must be a routine process that occurs “easily and frequently” in the mode of plate tectonics currently operating on Earth. On the contrary, the most traditional mechanisms for the establishment of classic self-sustaining ocean-continent subduction—passive margin collapse and subduction transference—are surprisingly rare in observations and difficult to reproduce in numerical models. Two alternative scenarios—polarity reversal and lateral propagation-induced subduction initiation—are in contrast much better documented in nature and experimentally. However, switching of subduction polarity due to arc-continent collision and lateral transmission of subducting plate boundaries are both inextricably linked to pre-existing intra-oceanic convergence. We, therefore, conclude that the onset of classic ocean-continent subduction zones is possible only through the transition from a former intra-oceanic subduction system. This transition is likely facilitated by the ductile damage accumulation and stress concentration across the aging continental margin. From this perspective, the future closure of the Atlantic Ocean can be viewed as an archetypal example of the role of transitional process between intra-oceanic subduction (Lesser Antilles) and the development of a new subduction zone at a passive continental margin (eastern North America).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subduction initiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transform fault collapse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passive margin collapse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subduction transference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polarity reversal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lateral propagation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sierd Cloetingh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taras Gerya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pietro Sternai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Svetlana Botsyun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Earth Science</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2022)</subfield><subfield code="w">(DE-627)771399731</subfield><subfield code="w">(DE-600)2741235-0</subfield><subfield code="x">22966463</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/feart.2022.1097922</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/60a9935acca64eb083d5888fd7ac54c0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/feart.2022.1097922/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-6463</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.399042 |