Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers.
Analytic measurement of serum tumour markers is one of commonly used methods for cancer risk management in certain areas of the world (e.g. Taiwan). Recently, cancer screening based on multiple serum tumour markers has been frequently discussed. However, the risk-benefit outcomes appear to be unfavo...
Ausführliche Beschreibung
Autor*in: |
Hsin-Yao Wang [verfasserIn] Chia-Hsun Hsieh [verfasserIn] Chiao-Ni Wen [verfasserIn] Ying-Hao Wen [verfasserIn] Chun-Hsien Chen [verfasserIn] Jang-Jih Lu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Übergeordnetes Werk: |
In: PLoS ONE - Public Library of Science (PLoS), 2007, 11(2016), 6, p e0158285 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2016 ; number:6, p e0158285 |
Links: |
---|
DOI / URN: |
10.1371/journal.pone.0158285 |
---|
Katalog-ID: |
DOAJ001595431 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ001595431 | ||
003 | DE-627 | ||
005 | 20230502085111.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1371/journal.pone.0158285 |2 doi | |
035 | |a (DE-627)DOAJ001595431 | ||
035 | |a (DE-599)DOAJf4067ed0d13344dd9714db3a25435232 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Hsin-Yao Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers. |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Analytic measurement of serum tumour markers is one of commonly used methods for cancer risk management in certain areas of the world (e.g. Taiwan). Recently, cancer screening based on multiple serum tumour markers has been frequently discussed. However, the risk-benefit outcomes appear to be unfavourable for patients because of the low sensitivity and specificity. In this study, cancer screening models based on multiple serum tumour markers were designed using machine learning methods, namely support vector machine (SVM), k-nearest neighbour (KNN), and logistic regression, to improve the screening performance for multiple cancers in a large asymptomatic population.AFP, CEA, CA19-9, CYFRA21-1, and SCC were determined for 20 696 eligible individuals. PSA was measured in men and CA15-3 and CA125 in women. A variable selection process was applied to select robust variables from these serum tumour markers to design cancer detection models. The sensitivity, specificity, positive predictive value (PPV), negative predictive value, area under the curve, and Youden index of the models based on single tumour markers, combined test, and machine learning methods were compared. Moreover, relative risk reduction, absolute risk reduction (ARR), and absolute risk increase (ARI) were evaluated.To design cancer detection models using machine learning methods, CYFRA21-1 and SCC were selected for women, and all tumour markers were selected for men. SVM and KNN models significantly outperformed the single tumour markers and the combined test for men. All 3 studied machine learning methods outperformed single tumour markers and the combined test for women. For either men or women, the ARRs were between 0.003-0.008; the ARIs were between 0.119-0.306.Machine learning methods outperformed the combined test in analysing multiple tumour markers for cancer detection. However, cancer screening based solely on the application of multiple tumour markers remains unfavourable because of the inadequate PPV, ARR, and ARI, even when machine learning methods were incorporated into the analysis. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Chia-Hsun Hsieh |e verfasserin |4 aut | |
700 | 0 | |a Chiao-Ni Wen |e verfasserin |4 aut | |
700 | 0 | |a Ying-Hao Wen |e verfasserin |4 aut | |
700 | 0 | |a Chun-Hsien Chen |e verfasserin |4 aut | |
700 | 0 | |a Jang-Jih Lu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PLoS ONE |d Public Library of Science (PLoS), 2007 |g 11(2016), 6, p e0158285 |w (DE-627)523574592 |w (DE-600)2267670-3 |x 19326203 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2016 |g number:6, p e0158285 |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pone.0158285 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f4067ed0d13344dd9714db3a25435232 |z kostenfrei |
856 | 4 | 0 | |u http://europepmc.org/articles/PMC4927114?pdf=render |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1932-6203 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_235 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2016 |e 6, p e0158285 |
author_variant |
h y w hyw c h h chh c n w cnw y h w yhw c h c chc j j l jjl |
---|---|
matchkey_str |
article:19326203:2016----::acrsreignnsmtmtcouainysnm |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1371/journal.pone.0158285 doi (DE-627)DOAJ001595431 (DE-599)DOAJf4067ed0d13344dd9714db3a25435232 DE-627 ger DE-627 rakwb eng Hsin-Yao Wang verfasserin aut Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers. 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Analytic measurement of serum tumour markers is one of commonly used methods for cancer risk management in certain areas of the world (e.g. Taiwan). Recently, cancer screening based on multiple serum tumour markers has been frequently discussed. However, the risk-benefit outcomes appear to be unfavourable for patients because of the low sensitivity and specificity. In this study, cancer screening models based on multiple serum tumour markers were designed using machine learning methods, namely support vector machine (SVM), k-nearest neighbour (KNN), and logistic regression, to improve the screening performance for multiple cancers in a large asymptomatic population.AFP, CEA, CA19-9, CYFRA21-1, and SCC were determined for 20 696 eligible individuals. PSA was measured in men and CA15-3 and CA125 in women. A variable selection process was applied to select robust variables from these serum tumour markers to design cancer detection models. The sensitivity, specificity, positive predictive value (PPV), negative predictive value, area under the curve, and Youden index of the models based on single tumour markers, combined test, and machine learning methods were compared. Moreover, relative risk reduction, absolute risk reduction (ARR), and absolute risk increase (ARI) were evaluated.To design cancer detection models using machine learning methods, CYFRA21-1 and SCC were selected for women, and all tumour markers were selected for men. SVM and KNN models significantly outperformed the single tumour markers and the combined test for men. All 3 studied machine learning methods outperformed single tumour markers and the combined test for women. For either men or women, the ARRs were between 0.003-0.008; the ARIs were between 0.119-0.306.Machine learning methods outperformed the combined test in analysing multiple tumour markers for cancer detection. However, cancer screening based solely on the application of multiple tumour markers remains unfavourable because of the inadequate PPV, ARR, and ARI, even when machine learning methods were incorporated into the analysis. Medicine R Science Q Chia-Hsun Hsieh verfasserin aut Chiao-Ni Wen verfasserin aut Ying-Hao Wen verfasserin aut Chun-Hsien Chen verfasserin aut Jang-Jih Lu verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 11(2016), 6, p e0158285 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:11 year:2016 number:6, p e0158285 https://doi.org/10.1371/journal.pone.0158285 kostenfrei https://doaj.org/article/f4067ed0d13344dd9714db3a25435232 kostenfrei http://europepmc.org/articles/PMC4927114?pdf=render kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2016 6, p e0158285 |
spelling |
10.1371/journal.pone.0158285 doi (DE-627)DOAJ001595431 (DE-599)DOAJf4067ed0d13344dd9714db3a25435232 DE-627 ger DE-627 rakwb eng Hsin-Yao Wang verfasserin aut Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers. 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Analytic measurement of serum tumour markers is one of commonly used methods for cancer risk management in certain areas of the world (e.g. Taiwan). Recently, cancer screening based on multiple serum tumour markers has been frequently discussed. However, the risk-benefit outcomes appear to be unfavourable for patients because of the low sensitivity and specificity. In this study, cancer screening models based on multiple serum tumour markers were designed using machine learning methods, namely support vector machine (SVM), k-nearest neighbour (KNN), and logistic regression, to improve the screening performance for multiple cancers in a large asymptomatic population.AFP, CEA, CA19-9, CYFRA21-1, and SCC were determined for 20 696 eligible individuals. PSA was measured in men and CA15-3 and CA125 in women. A variable selection process was applied to select robust variables from these serum tumour markers to design cancer detection models. The sensitivity, specificity, positive predictive value (PPV), negative predictive value, area under the curve, and Youden index of the models based on single tumour markers, combined test, and machine learning methods were compared. Moreover, relative risk reduction, absolute risk reduction (ARR), and absolute risk increase (ARI) were evaluated.To design cancer detection models using machine learning methods, CYFRA21-1 and SCC were selected for women, and all tumour markers were selected for men. SVM and KNN models significantly outperformed the single tumour markers and the combined test for men. All 3 studied machine learning methods outperformed single tumour markers and the combined test for women. For either men or women, the ARRs were between 0.003-0.008; the ARIs were between 0.119-0.306.Machine learning methods outperformed the combined test in analysing multiple tumour markers for cancer detection. However, cancer screening based solely on the application of multiple tumour markers remains unfavourable because of the inadequate PPV, ARR, and ARI, even when machine learning methods were incorporated into the analysis. Medicine R Science Q Chia-Hsun Hsieh verfasserin aut Chiao-Ni Wen verfasserin aut Ying-Hao Wen verfasserin aut Chun-Hsien Chen verfasserin aut Jang-Jih Lu verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 11(2016), 6, p e0158285 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:11 year:2016 number:6, p e0158285 https://doi.org/10.1371/journal.pone.0158285 kostenfrei https://doaj.org/article/f4067ed0d13344dd9714db3a25435232 kostenfrei http://europepmc.org/articles/PMC4927114?pdf=render kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2016 6, p e0158285 |
allfields_unstemmed |
10.1371/journal.pone.0158285 doi (DE-627)DOAJ001595431 (DE-599)DOAJf4067ed0d13344dd9714db3a25435232 DE-627 ger DE-627 rakwb eng Hsin-Yao Wang verfasserin aut Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers. 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Analytic measurement of serum tumour markers is one of commonly used methods for cancer risk management in certain areas of the world (e.g. Taiwan). Recently, cancer screening based on multiple serum tumour markers has been frequently discussed. However, the risk-benefit outcomes appear to be unfavourable for patients because of the low sensitivity and specificity. In this study, cancer screening models based on multiple serum tumour markers were designed using machine learning methods, namely support vector machine (SVM), k-nearest neighbour (KNN), and logistic regression, to improve the screening performance for multiple cancers in a large asymptomatic population.AFP, CEA, CA19-9, CYFRA21-1, and SCC were determined for 20 696 eligible individuals. PSA was measured in men and CA15-3 and CA125 in women. A variable selection process was applied to select robust variables from these serum tumour markers to design cancer detection models. The sensitivity, specificity, positive predictive value (PPV), negative predictive value, area under the curve, and Youden index of the models based on single tumour markers, combined test, and machine learning methods were compared. Moreover, relative risk reduction, absolute risk reduction (ARR), and absolute risk increase (ARI) were evaluated.To design cancer detection models using machine learning methods, CYFRA21-1 and SCC were selected for women, and all tumour markers were selected for men. SVM and KNN models significantly outperformed the single tumour markers and the combined test for men. All 3 studied machine learning methods outperformed single tumour markers and the combined test for women. For either men or women, the ARRs were between 0.003-0.008; the ARIs were between 0.119-0.306.Machine learning methods outperformed the combined test in analysing multiple tumour markers for cancer detection. However, cancer screening based solely on the application of multiple tumour markers remains unfavourable because of the inadequate PPV, ARR, and ARI, even when machine learning methods were incorporated into the analysis. Medicine R Science Q Chia-Hsun Hsieh verfasserin aut Chiao-Ni Wen verfasserin aut Ying-Hao Wen verfasserin aut Chun-Hsien Chen verfasserin aut Jang-Jih Lu verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 11(2016), 6, p e0158285 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:11 year:2016 number:6, p e0158285 https://doi.org/10.1371/journal.pone.0158285 kostenfrei https://doaj.org/article/f4067ed0d13344dd9714db3a25435232 kostenfrei http://europepmc.org/articles/PMC4927114?pdf=render kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2016 6, p e0158285 |
allfieldsGer |
10.1371/journal.pone.0158285 doi (DE-627)DOAJ001595431 (DE-599)DOAJf4067ed0d13344dd9714db3a25435232 DE-627 ger DE-627 rakwb eng Hsin-Yao Wang verfasserin aut Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers. 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Analytic measurement of serum tumour markers is one of commonly used methods for cancer risk management in certain areas of the world (e.g. Taiwan). Recently, cancer screening based on multiple serum tumour markers has been frequently discussed. However, the risk-benefit outcomes appear to be unfavourable for patients because of the low sensitivity and specificity. In this study, cancer screening models based on multiple serum tumour markers were designed using machine learning methods, namely support vector machine (SVM), k-nearest neighbour (KNN), and logistic regression, to improve the screening performance for multiple cancers in a large asymptomatic population.AFP, CEA, CA19-9, CYFRA21-1, and SCC were determined for 20 696 eligible individuals. PSA was measured in men and CA15-3 and CA125 in women. A variable selection process was applied to select robust variables from these serum tumour markers to design cancer detection models. The sensitivity, specificity, positive predictive value (PPV), negative predictive value, area under the curve, and Youden index of the models based on single tumour markers, combined test, and machine learning methods were compared. Moreover, relative risk reduction, absolute risk reduction (ARR), and absolute risk increase (ARI) were evaluated.To design cancer detection models using machine learning methods, CYFRA21-1 and SCC were selected for women, and all tumour markers were selected for men. SVM and KNN models significantly outperformed the single tumour markers and the combined test for men. All 3 studied machine learning methods outperformed single tumour markers and the combined test for women. For either men or women, the ARRs were between 0.003-0.008; the ARIs were between 0.119-0.306.Machine learning methods outperformed the combined test in analysing multiple tumour markers for cancer detection. However, cancer screening based solely on the application of multiple tumour markers remains unfavourable because of the inadequate PPV, ARR, and ARI, even when machine learning methods were incorporated into the analysis. Medicine R Science Q Chia-Hsun Hsieh verfasserin aut Chiao-Ni Wen verfasserin aut Ying-Hao Wen verfasserin aut Chun-Hsien Chen verfasserin aut Jang-Jih Lu verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 11(2016), 6, p e0158285 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:11 year:2016 number:6, p e0158285 https://doi.org/10.1371/journal.pone.0158285 kostenfrei https://doaj.org/article/f4067ed0d13344dd9714db3a25435232 kostenfrei http://europepmc.org/articles/PMC4927114?pdf=render kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2016 6, p e0158285 |
allfieldsSound |
10.1371/journal.pone.0158285 doi (DE-627)DOAJ001595431 (DE-599)DOAJf4067ed0d13344dd9714db3a25435232 DE-627 ger DE-627 rakwb eng Hsin-Yao Wang verfasserin aut Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers. 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Analytic measurement of serum tumour markers is one of commonly used methods for cancer risk management in certain areas of the world (e.g. Taiwan). Recently, cancer screening based on multiple serum tumour markers has been frequently discussed. However, the risk-benefit outcomes appear to be unfavourable for patients because of the low sensitivity and specificity. In this study, cancer screening models based on multiple serum tumour markers were designed using machine learning methods, namely support vector machine (SVM), k-nearest neighbour (KNN), and logistic regression, to improve the screening performance for multiple cancers in a large asymptomatic population.AFP, CEA, CA19-9, CYFRA21-1, and SCC were determined for 20 696 eligible individuals. PSA was measured in men and CA15-3 and CA125 in women. A variable selection process was applied to select robust variables from these serum tumour markers to design cancer detection models. The sensitivity, specificity, positive predictive value (PPV), negative predictive value, area under the curve, and Youden index of the models based on single tumour markers, combined test, and machine learning methods were compared. Moreover, relative risk reduction, absolute risk reduction (ARR), and absolute risk increase (ARI) were evaluated.To design cancer detection models using machine learning methods, CYFRA21-1 and SCC were selected for women, and all tumour markers were selected for men. SVM and KNN models significantly outperformed the single tumour markers and the combined test for men. All 3 studied machine learning methods outperformed single tumour markers and the combined test for women. For either men or women, the ARRs were between 0.003-0.008; the ARIs were between 0.119-0.306.Machine learning methods outperformed the combined test in analysing multiple tumour markers for cancer detection. However, cancer screening based solely on the application of multiple tumour markers remains unfavourable because of the inadequate PPV, ARR, and ARI, even when machine learning methods were incorporated into the analysis. Medicine R Science Q Chia-Hsun Hsieh verfasserin aut Chiao-Ni Wen verfasserin aut Ying-Hao Wen verfasserin aut Chun-Hsien Chen verfasserin aut Jang-Jih Lu verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 11(2016), 6, p e0158285 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:11 year:2016 number:6, p e0158285 https://doi.org/10.1371/journal.pone.0158285 kostenfrei https://doaj.org/article/f4067ed0d13344dd9714db3a25435232 kostenfrei http://europepmc.org/articles/PMC4927114?pdf=render kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2016 6, p e0158285 |
language |
English |
source |
In PLoS ONE 11(2016), 6, p e0158285 volume:11 year:2016 number:6, p e0158285 |
sourceStr |
In PLoS ONE 11(2016), 6, p e0158285 volume:11 year:2016 number:6, p e0158285 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
PLoS ONE |
authorswithroles_txt_mv |
Hsin-Yao Wang @@aut@@ Chia-Hsun Hsieh @@aut@@ Chiao-Ni Wen @@aut@@ Ying-Hao Wen @@aut@@ Chun-Hsien Chen @@aut@@ Jang-Jih Lu @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
523574592 |
id |
DOAJ001595431 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ001595431</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502085111.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0158285</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ001595431</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf4067ed0d13344dd9714db3a25435232</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hsin-Yao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Analytic measurement of serum tumour markers is one of commonly used methods for cancer risk management in certain areas of the world (e.g. Taiwan). Recently, cancer screening based on multiple serum tumour markers has been frequently discussed. However, the risk-benefit outcomes appear to be unfavourable for patients because of the low sensitivity and specificity. In this study, cancer screening models based on multiple serum tumour markers were designed using machine learning methods, namely support vector machine (SVM), k-nearest neighbour (KNN), and logistic regression, to improve the screening performance for multiple cancers in a large asymptomatic population.AFP, CEA, CA19-9, CYFRA21-1, and SCC were determined for 20 696 eligible individuals. PSA was measured in men and CA15-3 and CA125 in women. A variable selection process was applied to select robust variables from these serum tumour markers to design cancer detection models. The sensitivity, specificity, positive predictive value (PPV), negative predictive value, area under the curve, and Youden index of the models based on single tumour markers, combined test, and machine learning methods were compared. Moreover, relative risk reduction, absolute risk reduction (ARR), and absolute risk increase (ARI) were evaluated.To design cancer detection models using machine learning methods, CYFRA21-1 and SCC were selected for women, and all tumour markers were selected for men. SVM and KNN models significantly outperformed the single tumour markers and the combined test for men. All 3 studied machine learning methods outperformed single tumour markers and the combined test for women. For either men or women, the ARRs were between 0.003-0.008; the ARIs were between 0.119-0.306.Machine learning methods outperformed the combined test in analysing multiple tumour markers for cancer detection. However, cancer screening based solely on the application of multiple tumour markers remains unfavourable because of the inadequate PPV, ARR, and ARI, even when machine learning methods were incorporated into the analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chia-Hsun Hsieh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chiao-Ni Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ying-Hao Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chun-Hsien Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jang-Jih Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">11(2016), 6, p e0158285</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6, p e0158285</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0158285</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f4067ed0d13344dd9714db3a25435232</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://europepmc.org/articles/PMC4927114?pdf=render</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2016</subfield><subfield code="e">6, p e0158285</subfield></datafield></record></collection>
|
author |
Hsin-Yao Wang |
spellingShingle |
Hsin-Yao Wang misc Medicine misc R misc Science misc Q Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers. |
authorStr |
Hsin-Yao Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)523574592 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19326203 |
topic_title |
Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PLoS ONE |
hierarchy_parent_id |
523574592 |
hierarchy_top_title |
PLoS ONE |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)523574592 (DE-600)2267670-3 |
title |
Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers. |
ctrlnum |
(DE-627)DOAJ001595431 (DE-599)DOAJf4067ed0d13344dd9714db3a25435232 |
title_full |
Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers |
author_sort |
Hsin-Yao Wang |
journal |
PLoS ONE |
journalStr |
PLoS ONE |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Hsin-Yao Wang Chia-Hsun Hsieh Chiao-Ni Wen Ying-Hao Wen Chun-Hsien Chen Jang-Jih Lu |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Hsin-Yao Wang |
doi_str_mv |
10.1371/journal.pone.0158285 |
author2-role |
verfasserin |
title_sort |
cancers screening in an asymptomatic population by using multiple tumour markers |
title_auth |
Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers. |
abstract |
Analytic measurement of serum tumour markers is one of commonly used methods for cancer risk management in certain areas of the world (e.g. Taiwan). Recently, cancer screening based on multiple serum tumour markers has been frequently discussed. However, the risk-benefit outcomes appear to be unfavourable for patients because of the low sensitivity and specificity. In this study, cancer screening models based on multiple serum tumour markers were designed using machine learning methods, namely support vector machine (SVM), k-nearest neighbour (KNN), and logistic regression, to improve the screening performance for multiple cancers in a large asymptomatic population.AFP, CEA, CA19-9, CYFRA21-1, and SCC were determined for 20 696 eligible individuals. PSA was measured in men and CA15-3 and CA125 in women. A variable selection process was applied to select robust variables from these serum tumour markers to design cancer detection models. The sensitivity, specificity, positive predictive value (PPV), negative predictive value, area under the curve, and Youden index of the models based on single tumour markers, combined test, and machine learning methods were compared. Moreover, relative risk reduction, absolute risk reduction (ARR), and absolute risk increase (ARI) were evaluated.To design cancer detection models using machine learning methods, CYFRA21-1 and SCC were selected for women, and all tumour markers were selected for men. SVM and KNN models significantly outperformed the single tumour markers and the combined test for men. All 3 studied machine learning methods outperformed single tumour markers and the combined test for women. For either men or women, the ARRs were between 0.003-0.008; the ARIs were between 0.119-0.306.Machine learning methods outperformed the combined test in analysing multiple tumour markers for cancer detection. However, cancer screening based solely on the application of multiple tumour markers remains unfavourable because of the inadequate PPV, ARR, and ARI, even when machine learning methods were incorporated into the analysis. |
abstractGer |
Analytic measurement of serum tumour markers is one of commonly used methods for cancer risk management in certain areas of the world (e.g. Taiwan). Recently, cancer screening based on multiple serum tumour markers has been frequently discussed. However, the risk-benefit outcomes appear to be unfavourable for patients because of the low sensitivity and specificity. In this study, cancer screening models based on multiple serum tumour markers were designed using machine learning methods, namely support vector machine (SVM), k-nearest neighbour (KNN), and logistic regression, to improve the screening performance for multiple cancers in a large asymptomatic population.AFP, CEA, CA19-9, CYFRA21-1, and SCC were determined for 20 696 eligible individuals. PSA was measured in men and CA15-3 and CA125 in women. A variable selection process was applied to select robust variables from these serum tumour markers to design cancer detection models. The sensitivity, specificity, positive predictive value (PPV), negative predictive value, area under the curve, and Youden index of the models based on single tumour markers, combined test, and machine learning methods were compared. Moreover, relative risk reduction, absolute risk reduction (ARR), and absolute risk increase (ARI) were evaluated.To design cancer detection models using machine learning methods, CYFRA21-1 and SCC were selected for women, and all tumour markers were selected for men. SVM and KNN models significantly outperformed the single tumour markers and the combined test for men. All 3 studied machine learning methods outperformed single tumour markers and the combined test for women. For either men or women, the ARRs were between 0.003-0.008; the ARIs were between 0.119-0.306.Machine learning methods outperformed the combined test in analysing multiple tumour markers for cancer detection. However, cancer screening based solely on the application of multiple tumour markers remains unfavourable because of the inadequate PPV, ARR, and ARI, even when machine learning methods were incorporated into the analysis. |
abstract_unstemmed |
Analytic measurement of serum tumour markers is one of commonly used methods for cancer risk management in certain areas of the world (e.g. Taiwan). Recently, cancer screening based on multiple serum tumour markers has been frequently discussed. However, the risk-benefit outcomes appear to be unfavourable for patients because of the low sensitivity and specificity. In this study, cancer screening models based on multiple serum tumour markers were designed using machine learning methods, namely support vector machine (SVM), k-nearest neighbour (KNN), and logistic regression, to improve the screening performance for multiple cancers in a large asymptomatic population.AFP, CEA, CA19-9, CYFRA21-1, and SCC were determined for 20 696 eligible individuals. PSA was measured in men and CA15-3 and CA125 in women. A variable selection process was applied to select robust variables from these serum tumour markers to design cancer detection models. The sensitivity, specificity, positive predictive value (PPV), negative predictive value, area under the curve, and Youden index of the models based on single tumour markers, combined test, and machine learning methods were compared. Moreover, relative risk reduction, absolute risk reduction (ARR), and absolute risk increase (ARI) were evaluated.To design cancer detection models using machine learning methods, CYFRA21-1 and SCC were selected for women, and all tumour markers were selected for men. SVM and KNN models significantly outperformed the single tumour markers and the combined test for men. All 3 studied machine learning methods outperformed single tumour markers and the combined test for women. For either men or women, the ARRs were between 0.003-0.008; the ARIs were between 0.119-0.306.Machine learning methods outperformed the combined test in analysing multiple tumour markers for cancer detection. However, cancer screening based solely on the application of multiple tumour markers remains unfavourable because of the inadequate PPV, ARR, and ARI, even when machine learning methods were incorporated into the analysis. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p e0158285 |
title_short |
Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers. |
url |
https://doi.org/10.1371/journal.pone.0158285 https://doaj.org/article/f4067ed0d13344dd9714db3a25435232 http://europepmc.org/articles/PMC4927114?pdf=render https://doaj.org/toc/1932-6203 |
remote_bool |
true |
author2 |
Chia-Hsun Hsieh Chiao-Ni Wen Ying-Hao Wen Chun-Hsien Chen Jang-Jih Lu |
author2Str |
Chia-Hsun Hsieh Chiao-Ni Wen Ying-Hao Wen Chun-Hsien Chen Jang-Jih Lu |
ppnlink |
523574592 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1371/journal.pone.0158285 |
up_date |
2024-07-03T21:21:34.460Z |
_version_ |
1803594439812186112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ001595431</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502085111.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0158285</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ001595431</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf4067ed0d13344dd9714db3a25435232</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hsin-Yao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Analytic measurement of serum tumour markers is one of commonly used methods for cancer risk management in certain areas of the world (e.g. Taiwan). Recently, cancer screening based on multiple serum tumour markers has been frequently discussed. However, the risk-benefit outcomes appear to be unfavourable for patients because of the low sensitivity and specificity. In this study, cancer screening models based on multiple serum tumour markers were designed using machine learning methods, namely support vector machine (SVM), k-nearest neighbour (KNN), and logistic regression, to improve the screening performance for multiple cancers in a large asymptomatic population.AFP, CEA, CA19-9, CYFRA21-1, and SCC were determined for 20 696 eligible individuals. PSA was measured in men and CA15-3 and CA125 in women. A variable selection process was applied to select robust variables from these serum tumour markers to design cancer detection models. The sensitivity, specificity, positive predictive value (PPV), negative predictive value, area under the curve, and Youden index of the models based on single tumour markers, combined test, and machine learning methods were compared. Moreover, relative risk reduction, absolute risk reduction (ARR), and absolute risk increase (ARI) were evaluated.To design cancer detection models using machine learning methods, CYFRA21-1 and SCC were selected for women, and all tumour markers were selected for men. SVM and KNN models significantly outperformed the single tumour markers and the combined test for men. All 3 studied machine learning methods outperformed single tumour markers and the combined test for women. For either men or women, the ARRs were between 0.003-0.008; the ARIs were between 0.119-0.306.Machine learning methods outperformed the combined test in analysing multiple tumour markers for cancer detection. However, cancer screening based solely on the application of multiple tumour markers remains unfavourable because of the inadequate PPV, ARR, and ARI, even when machine learning methods were incorporated into the analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chia-Hsun Hsieh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chiao-Ni Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ying-Hao Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chun-Hsien Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jang-Jih Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">11(2016), 6, p e0158285</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6, p e0158285</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0158285</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f4067ed0d13344dd9714db3a25435232</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://europepmc.org/articles/PMC4927114?pdf=render</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2016</subfield><subfield code="e">6, p e0158285</subfield></datafield></record></collection>
|
score |
7.3993406 |