CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data
Estimation of genetic population structure based on molecular markers is a common task in population genetics and ecology. We apply a generalized linear model with LASSO regularization to infer relationships between individuals and populations from molecular marker data. Specifically, we apply a nei...
Ausführliche Beschreibung
Autor*in: |
Markku O. Kuismin [verfasserIn] Jon Ahlinder [verfasserIn] Mikko J. Sillanpӓӓ [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: G3: Genes, Genomes, Genetics - Oxford University Press, 2012, 7(2017), 10, Seite 3359-3377 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2017 ; number:10 ; pages:3359-3377 |
Links: |
---|
DOI / URN: |
10.1534/g3.117.300131 |
---|
Katalog-ID: |
DOAJ001943030 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ001943030 | ||
003 | DE-627 | ||
005 | 20230309164918.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1534/g3.117.300131 |2 doi | |
035 | |a (DE-627)DOAJ001943030 | ||
035 | |a (DE-599)DOAJ8f3386bb7b7e4ba18eb8faa403bde4bf | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH426-470 | |
100 | 0 | |a Markku O. Kuismin |e verfasserin |4 aut | |
245 | 1 | 0 | |a CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Estimation of genetic population structure based on molecular markers is a common task in population genetics and ecology. We apply a generalized linear model with LASSO regularization to infer relationships between individuals and populations from molecular marker data. Specifically, we apply a neighborhood selection algorithm to infer population genetic structure and gene flow between populations. The resulting relationships are used to construct an individual-level population graph. Different network substructures known as communities are then dissociated from each other using a community detection algorithm. Inference of population structure using networks combines the good properties of: (i) network theory (broad collection of tools, including aesthetically pleasing visualization), (ii) principal component analysis (dimension reduction together with simple visual inspection), and (iii) model-based methods (e.g., ancestry coefficient estimates). We have named our process CONE (for community oriented network estimation). CONE has fewer restrictions than conventional assignment methods in that properties such as the number of subpopulations need not be fixed before the analysis and the sample may include close relatives or involve uneven sampling. Applying CONE on simulated data sets resulted in more accurate estimates of the true number of subpopulations than model-based methods, and provided comparable ancestry coefficient estimates. Inference of empirical data sets of teosinte single nucleotide polymorphism, bacterial disease outbreak, and the human genome diversity panel illustrate that population structures estimated with CONE are consistent with the earlier findings | ||
650 | 4 | |a community detection | |
650 | 4 | |a graphical models | |
650 | 4 | |a neighborhood selection | |
650 | 4 | |a population genetic structure | |
650 | 4 | |a population graph | |
653 | 0 | |a Genetics | |
700 | 0 | |a Jon Ahlinder |e verfasserin |4 aut | |
700 | 0 | |a Mikko J. Sillanpӓӓ |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t G3: Genes, Genomes, Genetics |d Oxford University Press, 2012 |g 7(2017), 10, Seite 3359-3377 |w (DE-627)668901071 |w (DE-600)2629978-1 |x 21601836 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2017 |g number:10 |g pages:3359-3377 |
856 | 4 | 0 | |u https://doi.org/10.1534/g3.117.300131 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8f3386bb7b7e4ba18eb8faa403bde4bf |z kostenfrei |
856 | 4 | 0 | |u http://g3journal.org/lookup/doi/10.1534/g3.117.300131 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2160-1836 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2017 |e 10 |h 3359-3377 |
author_variant |
m o k mok j a ja m j s mjs |
---|---|
matchkey_str |
article:21601836:2017----::oeomntoinentoksiainsvraiermwrfrnernppltosrc |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
QH |
publishDate |
2017 |
allfields |
10.1534/g3.117.300131 doi (DE-627)DOAJ001943030 (DE-599)DOAJ8f3386bb7b7e4ba18eb8faa403bde4bf DE-627 ger DE-627 rakwb eng QH426-470 Markku O. Kuismin verfasserin aut CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimation of genetic population structure based on molecular markers is a common task in population genetics and ecology. We apply a generalized linear model with LASSO regularization to infer relationships between individuals and populations from molecular marker data. Specifically, we apply a neighborhood selection algorithm to infer population genetic structure and gene flow between populations. The resulting relationships are used to construct an individual-level population graph. Different network substructures known as communities are then dissociated from each other using a community detection algorithm. Inference of population structure using networks combines the good properties of: (i) network theory (broad collection of tools, including aesthetically pleasing visualization), (ii) principal component analysis (dimension reduction together with simple visual inspection), and (iii) model-based methods (e.g., ancestry coefficient estimates). We have named our process CONE (for community oriented network estimation). CONE has fewer restrictions than conventional assignment methods in that properties such as the number of subpopulations need not be fixed before the analysis and the sample may include close relatives or involve uneven sampling. Applying CONE on simulated data sets resulted in more accurate estimates of the true number of subpopulations than model-based methods, and provided comparable ancestry coefficient estimates. Inference of empirical data sets of teosinte single nucleotide polymorphism, bacterial disease outbreak, and the human genome diversity panel illustrate that population structures estimated with CONE are consistent with the earlier findings community detection graphical models neighborhood selection population genetic structure population graph Genetics Jon Ahlinder verfasserin aut Mikko J. Sillanpӓӓ verfasserin aut In G3: Genes, Genomes, Genetics Oxford University Press, 2012 7(2017), 10, Seite 3359-3377 (DE-627)668901071 (DE-600)2629978-1 21601836 nnns volume:7 year:2017 number:10 pages:3359-3377 https://doi.org/10.1534/g3.117.300131 kostenfrei https://doaj.org/article/8f3386bb7b7e4ba18eb8faa403bde4bf kostenfrei http://g3journal.org/lookup/doi/10.1534/g3.117.300131 kostenfrei https://doaj.org/toc/2160-1836 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 10 3359-3377 |
spelling |
10.1534/g3.117.300131 doi (DE-627)DOAJ001943030 (DE-599)DOAJ8f3386bb7b7e4ba18eb8faa403bde4bf DE-627 ger DE-627 rakwb eng QH426-470 Markku O. Kuismin verfasserin aut CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimation of genetic population structure based on molecular markers is a common task in population genetics and ecology. We apply a generalized linear model with LASSO regularization to infer relationships between individuals and populations from molecular marker data. Specifically, we apply a neighborhood selection algorithm to infer population genetic structure and gene flow between populations. The resulting relationships are used to construct an individual-level population graph. Different network substructures known as communities are then dissociated from each other using a community detection algorithm. Inference of population structure using networks combines the good properties of: (i) network theory (broad collection of tools, including aesthetically pleasing visualization), (ii) principal component analysis (dimension reduction together with simple visual inspection), and (iii) model-based methods (e.g., ancestry coefficient estimates). We have named our process CONE (for community oriented network estimation). CONE has fewer restrictions than conventional assignment methods in that properties such as the number of subpopulations need not be fixed before the analysis and the sample may include close relatives or involve uneven sampling. Applying CONE on simulated data sets resulted in more accurate estimates of the true number of subpopulations than model-based methods, and provided comparable ancestry coefficient estimates. Inference of empirical data sets of teosinte single nucleotide polymorphism, bacterial disease outbreak, and the human genome diversity panel illustrate that population structures estimated with CONE are consistent with the earlier findings community detection graphical models neighborhood selection population genetic structure population graph Genetics Jon Ahlinder verfasserin aut Mikko J. Sillanpӓӓ verfasserin aut In G3: Genes, Genomes, Genetics Oxford University Press, 2012 7(2017), 10, Seite 3359-3377 (DE-627)668901071 (DE-600)2629978-1 21601836 nnns volume:7 year:2017 number:10 pages:3359-3377 https://doi.org/10.1534/g3.117.300131 kostenfrei https://doaj.org/article/8f3386bb7b7e4ba18eb8faa403bde4bf kostenfrei http://g3journal.org/lookup/doi/10.1534/g3.117.300131 kostenfrei https://doaj.org/toc/2160-1836 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 10 3359-3377 |
allfields_unstemmed |
10.1534/g3.117.300131 doi (DE-627)DOAJ001943030 (DE-599)DOAJ8f3386bb7b7e4ba18eb8faa403bde4bf DE-627 ger DE-627 rakwb eng QH426-470 Markku O. Kuismin verfasserin aut CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimation of genetic population structure based on molecular markers is a common task in population genetics and ecology. We apply a generalized linear model with LASSO regularization to infer relationships between individuals and populations from molecular marker data. Specifically, we apply a neighborhood selection algorithm to infer population genetic structure and gene flow between populations. The resulting relationships are used to construct an individual-level population graph. Different network substructures known as communities are then dissociated from each other using a community detection algorithm. Inference of population structure using networks combines the good properties of: (i) network theory (broad collection of tools, including aesthetically pleasing visualization), (ii) principal component analysis (dimension reduction together with simple visual inspection), and (iii) model-based methods (e.g., ancestry coefficient estimates). We have named our process CONE (for community oriented network estimation). CONE has fewer restrictions than conventional assignment methods in that properties such as the number of subpopulations need not be fixed before the analysis and the sample may include close relatives or involve uneven sampling. Applying CONE on simulated data sets resulted in more accurate estimates of the true number of subpopulations than model-based methods, and provided comparable ancestry coefficient estimates. Inference of empirical data sets of teosinte single nucleotide polymorphism, bacterial disease outbreak, and the human genome diversity panel illustrate that population structures estimated with CONE are consistent with the earlier findings community detection graphical models neighborhood selection population genetic structure population graph Genetics Jon Ahlinder verfasserin aut Mikko J. Sillanpӓӓ verfasserin aut In G3: Genes, Genomes, Genetics Oxford University Press, 2012 7(2017), 10, Seite 3359-3377 (DE-627)668901071 (DE-600)2629978-1 21601836 nnns volume:7 year:2017 number:10 pages:3359-3377 https://doi.org/10.1534/g3.117.300131 kostenfrei https://doaj.org/article/8f3386bb7b7e4ba18eb8faa403bde4bf kostenfrei http://g3journal.org/lookup/doi/10.1534/g3.117.300131 kostenfrei https://doaj.org/toc/2160-1836 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 10 3359-3377 |
allfieldsGer |
10.1534/g3.117.300131 doi (DE-627)DOAJ001943030 (DE-599)DOAJ8f3386bb7b7e4ba18eb8faa403bde4bf DE-627 ger DE-627 rakwb eng QH426-470 Markku O. Kuismin verfasserin aut CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimation of genetic population structure based on molecular markers is a common task in population genetics and ecology. We apply a generalized linear model with LASSO regularization to infer relationships between individuals and populations from molecular marker data. Specifically, we apply a neighborhood selection algorithm to infer population genetic structure and gene flow between populations. The resulting relationships are used to construct an individual-level population graph. Different network substructures known as communities are then dissociated from each other using a community detection algorithm. Inference of population structure using networks combines the good properties of: (i) network theory (broad collection of tools, including aesthetically pleasing visualization), (ii) principal component analysis (dimension reduction together with simple visual inspection), and (iii) model-based methods (e.g., ancestry coefficient estimates). We have named our process CONE (for community oriented network estimation). CONE has fewer restrictions than conventional assignment methods in that properties such as the number of subpopulations need not be fixed before the analysis and the sample may include close relatives or involve uneven sampling. Applying CONE on simulated data sets resulted in more accurate estimates of the true number of subpopulations than model-based methods, and provided comparable ancestry coefficient estimates. Inference of empirical data sets of teosinte single nucleotide polymorphism, bacterial disease outbreak, and the human genome diversity panel illustrate that population structures estimated with CONE are consistent with the earlier findings community detection graphical models neighborhood selection population genetic structure population graph Genetics Jon Ahlinder verfasserin aut Mikko J. Sillanpӓӓ verfasserin aut In G3: Genes, Genomes, Genetics Oxford University Press, 2012 7(2017), 10, Seite 3359-3377 (DE-627)668901071 (DE-600)2629978-1 21601836 nnns volume:7 year:2017 number:10 pages:3359-3377 https://doi.org/10.1534/g3.117.300131 kostenfrei https://doaj.org/article/8f3386bb7b7e4ba18eb8faa403bde4bf kostenfrei http://g3journal.org/lookup/doi/10.1534/g3.117.300131 kostenfrei https://doaj.org/toc/2160-1836 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 10 3359-3377 |
allfieldsSound |
10.1534/g3.117.300131 doi (DE-627)DOAJ001943030 (DE-599)DOAJ8f3386bb7b7e4ba18eb8faa403bde4bf DE-627 ger DE-627 rakwb eng QH426-470 Markku O. Kuismin verfasserin aut CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimation of genetic population structure based on molecular markers is a common task in population genetics and ecology. We apply a generalized linear model with LASSO regularization to infer relationships between individuals and populations from molecular marker data. Specifically, we apply a neighborhood selection algorithm to infer population genetic structure and gene flow between populations. The resulting relationships are used to construct an individual-level population graph. Different network substructures known as communities are then dissociated from each other using a community detection algorithm. Inference of population structure using networks combines the good properties of: (i) network theory (broad collection of tools, including aesthetically pleasing visualization), (ii) principal component analysis (dimension reduction together with simple visual inspection), and (iii) model-based methods (e.g., ancestry coefficient estimates). We have named our process CONE (for community oriented network estimation). CONE has fewer restrictions than conventional assignment methods in that properties such as the number of subpopulations need not be fixed before the analysis and the sample may include close relatives or involve uneven sampling. Applying CONE on simulated data sets resulted in more accurate estimates of the true number of subpopulations than model-based methods, and provided comparable ancestry coefficient estimates. Inference of empirical data sets of teosinte single nucleotide polymorphism, bacterial disease outbreak, and the human genome diversity panel illustrate that population structures estimated with CONE are consistent with the earlier findings community detection graphical models neighborhood selection population genetic structure population graph Genetics Jon Ahlinder verfasserin aut Mikko J. Sillanpӓӓ verfasserin aut In G3: Genes, Genomes, Genetics Oxford University Press, 2012 7(2017), 10, Seite 3359-3377 (DE-627)668901071 (DE-600)2629978-1 21601836 nnns volume:7 year:2017 number:10 pages:3359-3377 https://doi.org/10.1534/g3.117.300131 kostenfrei https://doaj.org/article/8f3386bb7b7e4ba18eb8faa403bde4bf kostenfrei http://g3journal.org/lookup/doi/10.1534/g3.117.300131 kostenfrei https://doaj.org/toc/2160-1836 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 10 3359-3377 |
language |
English |
source |
In G3: Genes, Genomes, Genetics 7(2017), 10, Seite 3359-3377 volume:7 year:2017 number:10 pages:3359-3377 |
sourceStr |
In G3: Genes, Genomes, Genetics 7(2017), 10, Seite 3359-3377 volume:7 year:2017 number:10 pages:3359-3377 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
community detection graphical models neighborhood selection population genetic structure population graph Genetics |
isfreeaccess_bool |
true |
container_title |
G3: Genes, Genomes, Genetics |
authorswithroles_txt_mv |
Markku O. Kuismin @@aut@@ Jon Ahlinder @@aut@@ Mikko J. Sillanpӓӓ @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
668901071 |
id |
DOAJ001943030 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ001943030</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309164918.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1534/g3.117.300131</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ001943030</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8f3386bb7b7e4ba18eb8faa403bde4bf</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Markku O. Kuismin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Estimation of genetic population structure based on molecular markers is a common task in population genetics and ecology. We apply a generalized linear model with LASSO regularization to infer relationships between individuals and populations from molecular marker data. Specifically, we apply a neighborhood selection algorithm to infer population genetic structure and gene flow between populations. The resulting relationships are used to construct an individual-level population graph. Different network substructures known as communities are then dissociated from each other using a community detection algorithm. Inference of population structure using networks combines the good properties of: (i) network theory (broad collection of tools, including aesthetically pleasing visualization), (ii) principal component analysis (dimension reduction together with simple visual inspection), and (iii) model-based methods (e.g., ancestry coefficient estimates). We have named our process CONE (for community oriented network estimation). CONE has fewer restrictions than conventional assignment methods in that properties such as the number of subpopulations need not be fixed before the analysis and the sample may include close relatives or involve uneven sampling. Applying CONE on simulated data sets resulted in more accurate estimates of the true number of subpopulations than model-based methods, and provided comparable ancestry coefficient estimates. Inference of empirical data sets of teosinte single nucleotide polymorphism, bacterial disease outbreak, and the human genome diversity panel illustrate that population structures estimated with CONE are consistent with the earlier findings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">community detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graphical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neighborhood selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">population genetic structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">population graph</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jon Ahlinder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mikko J. Sillanpӓӓ</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">G3: Genes, Genomes, Genetics</subfield><subfield code="d">Oxford University Press, 2012</subfield><subfield code="g">7(2017), 10, Seite 3359-3377</subfield><subfield code="w">(DE-627)668901071</subfield><subfield code="w">(DE-600)2629978-1</subfield><subfield code="x">21601836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:3359-3377</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1534/g3.117.300131</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8f3386bb7b7e4ba18eb8faa403bde4bf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://g3journal.org/lookup/doi/10.1534/g3.117.300131</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2160-1836</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="h">3359-3377</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Markku O. Kuismin |
spellingShingle |
Markku O. Kuismin misc QH426-470 misc community detection misc graphical models misc neighborhood selection misc population genetic structure misc population graph misc Genetics CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data |
authorStr |
Markku O. Kuismin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)668901071 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH426-470 |
illustrated |
Not Illustrated |
issn |
21601836 |
topic_title |
QH426-470 CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data community detection graphical models neighborhood selection population genetic structure population graph |
topic |
misc QH426-470 misc community detection misc graphical models misc neighborhood selection misc population genetic structure misc population graph misc Genetics |
topic_unstemmed |
misc QH426-470 misc community detection misc graphical models misc neighborhood selection misc population genetic structure misc population graph misc Genetics |
topic_browse |
misc QH426-470 misc community detection misc graphical models misc neighborhood selection misc population genetic structure misc population graph misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
G3: Genes, Genomes, Genetics |
hierarchy_parent_id |
668901071 |
hierarchy_top_title |
G3: Genes, Genomes, Genetics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)668901071 (DE-600)2629978-1 |
title |
CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data |
ctrlnum |
(DE-627)DOAJ001943030 (DE-599)DOAJ8f3386bb7b7e4ba18eb8faa403bde4bf |
title_full |
CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data |
author_sort |
Markku O. Kuismin |
journal |
G3: Genes, Genomes, Genetics |
journalStr |
G3: Genes, Genomes, Genetics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
3359 |
author_browse |
Markku O. Kuismin Jon Ahlinder Mikko J. Sillanpӓӓ |
container_volume |
7 |
class |
QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Markku O. Kuismin |
doi_str_mv |
10.1534/g3.117.300131 |
author2-role |
verfasserin |
title_sort |
cone: community oriented network estimation is a versatile framework for inferring population structure in large-scale sequencing data |
callnumber |
QH426-470 |
title_auth |
CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data |
abstract |
Estimation of genetic population structure based on molecular markers is a common task in population genetics and ecology. We apply a generalized linear model with LASSO regularization to infer relationships between individuals and populations from molecular marker data. Specifically, we apply a neighborhood selection algorithm to infer population genetic structure and gene flow between populations. The resulting relationships are used to construct an individual-level population graph. Different network substructures known as communities are then dissociated from each other using a community detection algorithm. Inference of population structure using networks combines the good properties of: (i) network theory (broad collection of tools, including aesthetically pleasing visualization), (ii) principal component analysis (dimension reduction together with simple visual inspection), and (iii) model-based methods (e.g., ancestry coefficient estimates). We have named our process CONE (for community oriented network estimation). CONE has fewer restrictions than conventional assignment methods in that properties such as the number of subpopulations need not be fixed before the analysis and the sample may include close relatives or involve uneven sampling. Applying CONE on simulated data sets resulted in more accurate estimates of the true number of subpopulations than model-based methods, and provided comparable ancestry coefficient estimates. Inference of empirical data sets of teosinte single nucleotide polymorphism, bacterial disease outbreak, and the human genome diversity panel illustrate that population structures estimated with CONE are consistent with the earlier findings |
abstractGer |
Estimation of genetic population structure based on molecular markers is a common task in population genetics and ecology. We apply a generalized linear model with LASSO regularization to infer relationships between individuals and populations from molecular marker data. Specifically, we apply a neighborhood selection algorithm to infer population genetic structure and gene flow between populations. The resulting relationships are used to construct an individual-level population graph. Different network substructures known as communities are then dissociated from each other using a community detection algorithm. Inference of population structure using networks combines the good properties of: (i) network theory (broad collection of tools, including aesthetically pleasing visualization), (ii) principal component analysis (dimension reduction together with simple visual inspection), and (iii) model-based methods (e.g., ancestry coefficient estimates). We have named our process CONE (for community oriented network estimation). CONE has fewer restrictions than conventional assignment methods in that properties such as the number of subpopulations need not be fixed before the analysis and the sample may include close relatives or involve uneven sampling. Applying CONE on simulated data sets resulted in more accurate estimates of the true number of subpopulations than model-based methods, and provided comparable ancestry coefficient estimates. Inference of empirical data sets of teosinte single nucleotide polymorphism, bacterial disease outbreak, and the human genome diversity panel illustrate that population structures estimated with CONE are consistent with the earlier findings |
abstract_unstemmed |
Estimation of genetic population structure based on molecular markers is a common task in population genetics and ecology. We apply a generalized linear model with LASSO regularization to infer relationships between individuals and populations from molecular marker data. Specifically, we apply a neighborhood selection algorithm to infer population genetic structure and gene flow between populations. The resulting relationships are used to construct an individual-level population graph. Different network substructures known as communities are then dissociated from each other using a community detection algorithm. Inference of population structure using networks combines the good properties of: (i) network theory (broad collection of tools, including aesthetically pleasing visualization), (ii) principal component analysis (dimension reduction together with simple visual inspection), and (iii) model-based methods (e.g., ancestry coefficient estimates). We have named our process CONE (for community oriented network estimation). CONE has fewer restrictions than conventional assignment methods in that properties such as the number of subpopulations need not be fixed before the analysis and the sample may include close relatives or involve uneven sampling. Applying CONE on simulated data sets resulted in more accurate estimates of the true number of subpopulations than model-based methods, and provided comparable ancestry coefficient estimates. Inference of empirical data sets of teosinte single nucleotide polymorphism, bacterial disease outbreak, and the human genome diversity panel illustrate that population structures estimated with CONE are consistent with the earlier findings |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10 |
title_short |
CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data |
url |
https://doi.org/10.1534/g3.117.300131 https://doaj.org/article/8f3386bb7b7e4ba18eb8faa403bde4bf http://g3journal.org/lookup/doi/10.1534/g3.117.300131 https://doaj.org/toc/2160-1836 |
remote_bool |
true |
author2 |
Jon Ahlinder Mikko J. Sillanpӓӓ |
author2Str |
Jon Ahlinder Mikko J. Sillanpӓӓ |
ppnlink |
668901071 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1534/g3.117.300131 |
callnumber-a |
QH426-470 |
up_date |
2024-07-03T23:11:16.282Z |
_version_ |
1803601341351723008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ001943030</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309164918.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1534/g3.117.300131</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ001943030</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8f3386bb7b7e4ba18eb8faa403bde4bf</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Markku O. Kuismin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CONE: Community Oriented Network Estimation Is a Versatile Framework for Inferring Population Structure in Large-Scale Sequencing Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Estimation of genetic population structure based on molecular markers is a common task in population genetics and ecology. We apply a generalized linear model with LASSO regularization to infer relationships between individuals and populations from molecular marker data. Specifically, we apply a neighborhood selection algorithm to infer population genetic structure and gene flow between populations. The resulting relationships are used to construct an individual-level population graph. Different network substructures known as communities are then dissociated from each other using a community detection algorithm. Inference of population structure using networks combines the good properties of: (i) network theory (broad collection of tools, including aesthetically pleasing visualization), (ii) principal component analysis (dimension reduction together with simple visual inspection), and (iii) model-based methods (e.g., ancestry coefficient estimates). We have named our process CONE (for community oriented network estimation). CONE has fewer restrictions than conventional assignment methods in that properties such as the number of subpopulations need not be fixed before the analysis and the sample may include close relatives or involve uneven sampling. Applying CONE on simulated data sets resulted in more accurate estimates of the true number of subpopulations than model-based methods, and provided comparable ancestry coefficient estimates. Inference of empirical data sets of teosinte single nucleotide polymorphism, bacterial disease outbreak, and the human genome diversity panel illustrate that population structures estimated with CONE are consistent with the earlier findings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">community detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graphical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neighborhood selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">population genetic structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">population graph</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jon Ahlinder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mikko J. Sillanpӓӓ</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">G3: Genes, Genomes, Genetics</subfield><subfield code="d">Oxford University Press, 2012</subfield><subfield code="g">7(2017), 10, Seite 3359-3377</subfield><subfield code="w">(DE-627)668901071</subfield><subfield code="w">(DE-600)2629978-1</subfield><subfield code="x">21601836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:3359-3377</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1534/g3.117.300131</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8f3386bb7b7e4ba18eb8faa403bde4bf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://g3journal.org/lookup/doi/10.1534/g3.117.300131</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2160-1836</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="h">3359-3377</subfield></datafield></record></collection>
|
score |
7.401046 |