Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome
Abstract Background Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome an...
Ausführliche Beschreibung
Autor*in: |
David Casero [verfasserIn] Kirandeep Gill [verfasserIn] Vijayalakshmi Sridharan [verfasserIn] Igor Koturbash [verfasserIn] Gregory Nelson [verfasserIn] Martin Hauer-Jensen [verfasserIn] Marjan Boerma [verfasserIn] Jonathan Braun [verfasserIn] Amrita K. Cheema [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Microbiome - BMC, 2013, 5(2017), 1, Seite 18 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2017 ; number:1 ; pages:18 |
Links: |
---|
DOI / URN: |
10.1186/s40168-017-0325-z |
---|
Katalog-ID: |
DOAJ001998994 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ001998994 | ||
003 | DE-627 | ||
005 | 20230309165119.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40168-017-0325-z |2 doi | |
035 | |a (DE-627)DOAJ001998994 | ||
035 | |a (DE-599)DOAJcb615717b6f34ad6ac2b1fa76bbb750f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR100-130 | |
100 | 0 | |a David Casero |e verfasserin |4 aut | |
245 | 1 | 0 | |a Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Results Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host’s cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. Conclusions The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects. | ||
650 | 4 | |a Ionizing radiation | |
650 | 4 | |a Space travel | |
650 | 4 | |a Microbiome | |
650 | 4 | |a 16S rRNA amplicon sequencing | |
650 | 4 | |a Untargeted metabolomics | |
650 | 4 | |a Metabolic network modeling | |
653 | 0 | |a Microbial ecology | |
700 | 0 | |a Kirandeep Gill |e verfasserin |4 aut | |
700 | 0 | |a Vijayalakshmi Sridharan |e verfasserin |4 aut | |
700 | 0 | |a Igor Koturbash |e verfasserin |4 aut | |
700 | 0 | |a Gregory Nelson |e verfasserin |4 aut | |
700 | 0 | |a Martin Hauer-Jensen |e verfasserin |4 aut | |
700 | 0 | |a Marjan Boerma |e verfasserin |4 aut | |
700 | 0 | |a Jonathan Braun |e verfasserin |4 aut | |
700 | 0 | |a Amrita K. Cheema |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Microbiome |d BMC, 2013 |g 5(2017), 1, Seite 18 |w (DE-627)734146140 |w (DE-600)2697425-3 |x 20492618 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2017 |g number:1 |g pages:18 |
856 | 4 | 0 | |u https://doi.org/10.1186/s40168-017-0325-z |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cb615717b6f34ad6ac2b1fa76bbb750f |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s40168-017-0325-z |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2049-2618 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2017 |e 1 |h 18 |
author_variant |
d c dc k g kg v s vs i k ik g n gn m h j mhj m b mb j b jb a k c akc |
---|---|
matchkey_str |
article:20492618:2017----::pctprdainnuemlioarsossnhmueumc |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
QR |
publishDate |
2017 |
allfields |
10.1186/s40168-017-0325-z doi (DE-627)DOAJ001998994 (DE-599)DOAJcb615717b6f34ad6ac2b1fa76bbb750f DE-627 ger DE-627 rakwb eng QR100-130 David Casero verfasserin aut Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Results Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host’s cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. Conclusions The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects. Ionizing radiation Space travel Microbiome 16S rRNA amplicon sequencing Untargeted metabolomics Metabolic network modeling Microbial ecology Kirandeep Gill verfasserin aut Vijayalakshmi Sridharan verfasserin aut Igor Koturbash verfasserin aut Gregory Nelson verfasserin aut Martin Hauer-Jensen verfasserin aut Marjan Boerma verfasserin aut Jonathan Braun verfasserin aut Amrita K. Cheema verfasserin aut In Microbiome BMC, 2013 5(2017), 1, Seite 18 (DE-627)734146140 (DE-600)2697425-3 20492618 nnns volume:5 year:2017 number:1 pages:18 https://doi.org/10.1186/s40168-017-0325-z kostenfrei https://doaj.org/article/cb615717b6f34ad6ac2b1fa76bbb750f kostenfrei http://link.springer.com/article/10.1186/s40168-017-0325-z kostenfrei https://doaj.org/toc/2049-2618 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2017 1 18 |
spelling |
10.1186/s40168-017-0325-z doi (DE-627)DOAJ001998994 (DE-599)DOAJcb615717b6f34ad6ac2b1fa76bbb750f DE-627 ger DE-627 rakwb eng QR100-130 David Casero verfasserin aut Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Results Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host’s cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. Conclusions The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects. Ionizing radiation Space travel Microbiome 16S rRNA amplicon sequencing Untargeted metabolomics Metabolic network modeling Microbial ecology Kirandeep Gill verfasserin aut Vijayalakshmi Sridharan verfasserin aut Igor Koturbash verfasserin aut Gregory Nelson verfasserin aut Martin Hauer-Jensen verfasserin aut Marjan Boerma verfasserin aut Jonathan Braun verfasserin aut Amrita K. Cheema verfasserin aut In Microbiome BMC, 2013 5(2017), 1, Seite 18 (DE-627)734146140 (DE-600)2697425-3 20492618 nnns volume:5 year:2017 number:1 pages:18 https://doi.org/10.1186/s40168-017-0325-z kostenfrei https://doaj.org/article/cb615717b6f34ad6ac2b1fa76bbb750f kostenfrei http://link.springer.com/article/10.1186/s40168-017-0325-z kostenfrei https://doaj.org/toc/2049-2618 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2017 1 18 |
allfields_unstemmed |
10.1186/s40168-017-0325-z doi (DE-627)DOAJ001998994 (DE-599)DOAJcb615717b6f34ad6ac2b1fa76bbb750f DE-627 ger DE-627 rakwb eng QR100-130 David Casero verfasserin aut Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Results Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host’s cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. Conclusions The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects. Ionizing radiation Space travel Microbiome 16S rRNA amplicon sequencing Untargeted metabolomics Metabolic network modeling Microbial ecology Kirandeep Gill verfasserin aut Vijayalakshmi Sridharan verfasserin aut Igor Koturbash verfasserin aut Gregory Nelson verfasserin aut Martin Hauer-Jensen verfasserin aut Marjan Boerma verfasserin aut Jonathan Braun verfasserin aut Amrita K. Cheema verfasserin aut In Microbiome BMC, 2013 5(2017), 1, Seite 18 (DE-627)734146140 (DE-600)2697425-3 20492618 nnns volume:5 year:2017 number:1 pages:18 https://doi.org/10.1186/s40168-017-0325-z kostenfrei https://doaj.org/article/cb615717b6f34ad6ac2b1fa76bbb750f kostenfrei http://link.springer.com/article/10.1186/s40168-017-0325-z kostenfrei https://doaj.org/toc/2049-2618 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2017 1 18 |
allfieldsGer |
10.1186/s40168-017-0325-z doi (DE-627)DOAJ001998994 (DE-599)DOAJcb615717b6f34ad6ac2b1fa76bbb750f DE-627 ger DE-627 rakwb eng QR100-130 David Casero verfasserin aut Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Results Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host’s cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. Conclusions The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects. Ionizing radiation Space travel Microbiome 16S rRNA amplicon sequencing Untargeted metabolomics Metabolic network modeling Microbial ecology Kirandeep Gill verfasserin aut Vijayalakshmi Sridharan verfasserin aut Igor Koturbash verfasserin aut Gregory Nelson verfasserin aut Martin Hauer-Jensen verfasserin aut Marjan Boerma verfasserin aut Jonathan Braun verfasserin aut Amrita K. Cheema verfasserin aut In Microbiome BMC, 2013 5(2017), 1, Seite 18 (DE-627)734146140 (DE-600)2697425-3 20492618 nnns volume:5 year:2017 number:1 pages:18 https://doi.org/10.1186/s40168-017-0325-z kostenfrei https://doaj.org/article/cb615717b6f34ad6ac2b1fa76bbb750f kostenfrei http://link.springer.com/article/10.1186/s40168-017-0325-z kostenfrei https://doaj.org/toc/2049-2618 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2017 1 18 |
allfieldsSound |
10.1186/s40168-017-0325-z doi (DE-627)DOAJ001998994 (DE-599)DOAJcb615717b6f34ad6ac2b1fa76bbb750f DE-627 ger DE-627 rakwb eng QR100-130 David Casero verfasserin aut Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Results Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host’s cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. Conclusions The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects. Ionizing radiation Space travel Microbiome 16S rRNA amplicon sequencing Untargeted metabolomics Metabolic network modeling Microbial ecology Kirandeep Gill verfasserin aut Vijayalakshmi Sridharan verfasserin aut Igor Koturbash verfasserin aut Gregory Nelson verfasserin aut Martin Hauer-Jensen verfasserin aut Marjan Boerma verfasserin aut Jonathan Braun verfasserin aut Amrita K. Cheema verfasserin aut In Microbiome BMC, 2013 5(2017), 1, Seite 18 (DE-627)734146140 (DE-600)2697425-3 20492618 nnns volume:5 year:2017 number:1 pages:18 https://doi.org/10.1186/s40168-017-0325-z kostenfrei https://doaj.org/article/cb615717b6f34ad6ac2b1fa76bbb750f kostenfrei http://link.springer.com/article/10.1186/s40168-017-0325-z kostenfrei https://doaj.org/toc/2049-2618 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2017 1 18 |
language |
English |
source |
In Microbiome 5(2017), 1, Seite 18 volume:5 year:2017 number:1 pages:18 |
sourceStr |
In Microbiome 5(2017), 1, Seite 18 volume:5 year:2017 number:1 pages:18 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ionizing radiation Space travel Microbiome 16S rRNA amplicon sequencing Untargeted metabolomics Metabolic network modeling Microbial ecology |
isfreeaccess_bool |
true |
container_title |
Microbiome |
authorswithroles_txt_mv |
David Casero @@aut@@ Kirandeep Gill @@aut@@ Vijayalakshmi Sridharan @@aut@@ Igor Koturbash @@aut@@ Gregory Nelson @@aut@@ Martin Hauer-Jensen @@aut@@ Marjan Boerma @@aut@@ Jonathan Braun @@aut@@ Amrita K. Cheema @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
734146140 |
id |
DOAJ001998994 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ001998994</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309165119.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40168-017-0325-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ001998994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcb615717b6f34ad6ac2b1fa76bbb750f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR100-130</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">David Casero</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Results Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host’s cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. Conclusions The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionizing radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space travel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbiome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">16S rRNA amplicon sequencing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Untargeted metabolomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolic network modeling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbial ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kirandeep Gill</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vijayalakshmi Sridharan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Igor Koturbash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gregory Nelson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martin Hauer-Jensen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marjan Boerma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonathan Braun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amrita K. Cheema</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Microbiome</subfield><subfield code="d">BMC, 2013</subfield><subfield code="g">5(2017), 1, Seite 18</subfield><subfield code="w">(DE-627)734146140</subfield><subfield code="w">(DE-600)2697425-3</subfield><subfield code="x">20492618</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40168-017-0325-z</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cb615717b6f34ad6ac2b1fa76bbb750f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s40168-017-0325-z</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2049-2618</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">18</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
David Casero |
spellingShingle |
David Casero misc QR100-130 misc Ionizing radiation misc Space travel misc Microbiome misc 16S rRNA amplicon sequencing misc Untargeted metabolomics misc Metabolic network modeling misc Microbial ecology Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome |
authorStr |
David Casero |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)734146140 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR100-130 |
illustrated |
Not Illustrated |
issn |
20492618 |
topic_title |
QR100-130 Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome Ionizing radiation Space travel Microbiome 16S rRNA amplicon sequencing Untargeted metabolomics Metabolic network modeling |
topic |
misc QR100-130 misc Ionizing radiation misc Space travel misc Microbiome misc 16S rRNA amplicon sequencing misc Untargeted metabolomics misc Metabolic network modeling misc Microbial ecology |
topic_unstemmed |
misc QR100-130 misc Ionizing radiation misc Space travel misc Microbiome misc 16S rRNA amplicon sequencing misc Untargeted metabolomics misc Metabolic network modeling misc Microbial ecology |
topic_browse |
misc QR100-130 misc Ionizing radiation misc Space travel misc Microbiome misc 16S rRNA amplicon sequencing misc Untargeted metabolomics misc Metabolic network modeling misc Microbial ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Microbiome |
hierarchy_parent_id |
734146140 |
hierarchy_top_title |
Microbiome |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)734146140 (DE-600)2697425-3 |
title |
Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome |
ctrlnum |
(DE-627)DOAJ001998994 (DE-599)DOAJcb615717b6f34ad6ac2b1fa76bbb750f |
title_full |
Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome |
author_sort |
David Casero |
journal |
Microbiome |
journalStr |
Microbiome |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
18 |
author_browse |
David Casero Kirandeep Gill Vijayalakshmi Sridharan Igor Koturbash Gregory Nelson Martin Hauer-Jensen Marjan Boerma Jonathan Braun Amrita K. Cheema |
container_volume |
5 |
class |
QR100-130 |
format_se |
Elektronische Aufsätze |
author-letter |
David Casero |
doi_str_mv |
10.1186/s40168-017-0325-z |
author2-role |
verfasserin |
title_sort |
space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome |
callnumber |
QR100-130 |
title_auth |
Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome |
abstract |
Abstract Background Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Results Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host’s cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. Conclusions The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects. |
abstractGer |
Abstract Background Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Results Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host’s cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. Conclusions The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects. |
abstract_unstemmed |
Abstract Background Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Results Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host’s cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. Conclusions The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome |
url |
https://doi.org/10.1186/s40168-017-0325-z https://doaj.org/article/cb615717b6f34ad6ac2b1fa76bbb750f http://link.springer.com/article/10.1186/s40168-017-0325-z https://doaj.org/toc/2049-2618 |
remote_bool |
true |
author2 |
Kirandeep Gill Vijayalakshmi Sridharan Igor Koturbash Gregory Nelson Martin Hauer-Jensen Marjan Boerma Jonathan Braun Amrita K. Cheema |
author2Str |
Kirandeep Gill Vijayalakshmi Sridharan Igor Koturbash Gregory Nelson Martin Hauer-Jensen Marjan Boerma Jonathan Braun Amrita K. Cheema |
ppnlink |
734146140 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40168-017-0325-z |
callnumber-a |
QR100-130 |
up_date |
2024-07-03T23:26:53.599Z |
_version_ |
1803602324208222208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ001998994</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309165119.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40168-017-0325-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ001998994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcb615717b6f34ad6ac2b1fa76bbb750f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR100-130</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">David Casero</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Results Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host’s cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. Conclusions The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionizing radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space travel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbiome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">16S rRNA amplicon sequencing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Untargeted metabolomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolic network modeling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbial ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kirandeep Gill</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vijayalakshmi Sridharan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Igor Koturbash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gregory Nelson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martin Hauer-Jensen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marjan Boerma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonathan Braun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amrita K. Cheema</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Microbiome</subfield><subfield code="d">BMC, 2013</subfield><subfield code="g">5(2017), 1, Seite 18</subfield><subfield code="w">(DE-627)734146140</subfield><subfield code="w">(DE-600)2697425-3</subfield><subfield code="x">20492618</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40168-017-0325-z</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cb615717b6f34ad6ac2b1fa76bbb750f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s40168-017-0325-z</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2049-2618</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">18</subfield></datafield></record></collection>
|
score |
7.398264 |