Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations
A recently introduced Dual Three-Phase Active Bridge Converter (D3ABC) provides two three-phase ac ports (ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}...
Ausführliche Beschreibung
Autor*in: |
Morris J. Heller [verfasserIn] Florian Krismer [verfasserIn] Johann W. Kolar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
Dual Three-Phase Active Bridge Converter (D3ABC) topology |
---|
Übergeordnetes Werk: |
In: IEEE Open Journal of Power Electronics - IEEE, 2021, 3(2022), Seite 705-722 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2022 ; pages:705-722 |
Links: |
---|
DOI / URN: |
10.1109/OJPEL.2022.3213274 |
---|
Katalog-ID: |
DOAJ002213885 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ002213885 | ||
003 | DE-627 | ||
005 | 20230307021959.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/OJPEL.2022.3213274 |2 doi | |
035 | |a (DE-627)DOAJ002213885 | ||
035 | |a (DE-599)DOAJc5a901bc7d9c43f4a455401e5467d606 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Morris J. Heller |e verfasserin |4 aut | |
245 | 1 | 0 | |a Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A recently introduced Dual Three-Phase Active Bridge Converter (D3ABC) provides two three-phase ac ports (ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), two dc ports (dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), and galvanic isolation between the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< (primary side) and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< (secondary side). Previously documented studies confirm that the D3ABC is generally capable of transferring power between all four ports. However, it has been found challenging to operate the converter if ac voltages with different line frequencies, <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula<, are present at the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<. Such operation causes Low-Frequency (LF) power pulsations in the converter's dc links, leading to fluctuating dc link voltages and distorted phase currents. In this paper, a new duty-cycle dependent phase shift modulation scheme is proposed that eliminates such LF power pulsations and substantially increases the theoretical maximum transmittable power between primary and secondary sides compared to previous work. The new modulation scheme is developed on the basis of analytical considerations, which are supported by the results of numerical calculations, and verified by means of circuit simulations and experimental results. A hardware demonstrator originally designed for a rated power of <inline-formula<<tex-math notation="LaTeX"<$\text{8}\,$</tex-math<</inline-formula<kW when operated from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at the European low-voltage ac mains (<inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{ac,1}} = \text{230}\,{\rm V}$</tex-math<</inline-formula< line-to-neutral rms, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,1}} = \text{800}\,{\rm V}$</tex-math<</inline-formula<, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,2}} = \text{400}\,{\rm V}$</tex-math<</inline-formula<) is used for experimental verification. Since the operation with <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula< leads to an increase of the currents in the converter, the experimental verification is conducted at half voltages and for a reduced power of <inline-formula<<tex-math notation="LaTeX"<$\text{2}\,$</tex-math<</inline-formula<kW that is transferred from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at substantially different primary-side and secondary-side line frequencies of <inline-formula<<tex-math notation="LaTeX"<$f_{1} = \text{50}\,$</tex-math<</inline-formula<Hz and <inline-formula<<tex-math notation="LaTeX"<$f_{2} = \text{77}\,$</tex-math<</inline-formula<Hz. The measured results agree well with the simulated results. In particular, the dc link voltages show almost constant waveforms, which confirms the correct operation of the proposed modulation scheme. | ||
650 | 4 | |a Ac-dc power converters | |
650 | 4 | |a dc-ac power converters | |
650 | 4 | |a ac-ac converters | |
650 | 4 | |a Dual Three-Phase Active Bridge Converter (D3ABC) topology | |
650 | 4 | |a Dual Active Bridge (DAB) converter | |
650 | 4 | |a four-port ac-dc/dc-ac converter | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Florian Krismer |e verfasserin |4 aut | |
700 | 0 | |a Johann W. Kolar |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Open Journal of Power Electronics |d IEEE, 2021 |g 3(2022), Seite 705-722 |w (DE-627)1688451307 |w (DE-600)3006279-2 |x 26441314 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2022 |g pages:705-722 |
856 | 4 | 0 | |u https://doi.org/10.1109/OJPEL.2022.3213274 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c5a901bc7d9c43f4a455401e5467d606 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9915373/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2644-1314 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2022 |h 705-722 |
author_variant |
m j h mjh f k fk j w k jwk |
---|---|
matchkey_str |
article:26441314:2022----::uyyldpnethssitouainfulhepaecierdeorotccccovreeii |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1109/OJPEL.2022.3213274 doi (DE-627)DOAJ002213885 (DE-599)DOAJc5a901bc7d9c43f4a455401e5467d606 DE-627 ger DE-627 rakwb eng TK1-9971 Morris J. Heller verfasserin aut Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A recently introduced Dual Three-Phase Active Bridge Converter (D3ABC) provides two three-phase ac ports (ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), two dc ports (dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), and galvanic isolation between the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< (primary side) and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< (secondary side). Previously documented studies confirm that the D3ABC is generally capable of transferring power between all four ports. However, it has been found challenging to operate the converter if ac voltages with different line frequencies, <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula<, are present at the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<. Such operation causes Low-Frequency (LF) power pulsations in the converter's dc links, leading to fluctuating dc link voltages and distorted phase currents. In this paper, a new duty-cycle dependent phase shift modulation scheme is proposed that eliminates such LF power pulsations and substantially increases the theoretical maximum transmittable power between primary and secondary sides compared to previous work. The new modulation scheme is developed on the basis of analytical considerations, which are supported by the results of numerical calculations, and verified by means of circuit simulations and experimental results. A hardware demonstrator originally designed for a rated power of <inline-formula<<tex-math notation="LaTeX"<$\text{8}\,$</tex-math<</inline-formula<kW when operated from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at the European low-voltage ac mains (<inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{ac,1}} = \text{230}\,{\rm V}$</tex-math<</inline-formula< line-to-neutral rms, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,1}} = \text{800}\,{\rm V}$</tex-math<</inline-formula<, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,2}} = \text{400}\,{\rm V}$</tex-math<</inline-formula<) is used for experimental verification. Since the operation with <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula< leads to an increase of the currents in the converter, the experimental verification is conducted at half voltages and for a reduced power of <inline-formula<<tex-math notation="LaTeX"<$\text{2}\,$</tex-math<</inline-formula<kW that is transferred from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at substantially different primary-side and secondary-side line frequencies of <inline-formula<<tex-math notation="LaTeX"<$f_{1} = \text{50}\,$</tex-math<</inline-formula<Hz and <inline-formula<<tex-math notation="LaTeX"<$f_{2} = \text{77}\,$</tex-math<</inline-formula<Hz. The measured results agree well with the simulated results. In particular, the dc link voltages show almost constant waveforms, which confirms the correct operation of the proposed modulation scheme. Ac-dc power converters dc-ac power converters ac-ac converters Dual Three-Phase Active Bridge Converter (D3ABC) topology Dual Active Bridge (DAB) converter four-port ac-dc/dc-ac converter Electrical engineering. Electronics. Nuclear engineering Florian Krismer verfasserin aut Johann W. Kolar verfasserin aut In IEEE Open Journal of Power Electronics IEEE, 2021 3(2022), Seite 705-722 (DE-627)1688451307 (DE-600)3006279-2 26441314 nnns volume:3 year:2022 pages:705-722 https://doi.org/10.1109/OJPEL.2022.3213274 kostenfrei https://doaj.org/article/c5a901bc7d9c43f4a455401e5467d606 kostenfrei https://ieeexplore.ieee.org/document/9915373/ kostenfrei https://doaj.org/toc/2644-1314 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 705-722 |
spelling |
10.1109/OJPEL.2022.3213274 doi (DE-627)DOAJ002213885 (DE-599)DOAJc5a901bc7d9c43f4a455401e5467d606 DE-627 ger DE-627 rakwb eng TK1-9971 Morris J. Heller verfasserin aut Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A recently introduced Dual Three-Phase Active Bridge Converter (D3ABC) provides two three-phase ac ports (ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), two dc ports (dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), and galvanic isolation between the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< (primary side) and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< (secondary side). Previously documented studies confirm that the D3ABC is generally capable of transferring power between all four ports. However, it has been found challenging to operate the converter if ac voltages with different line frequencies, <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula<, are present at the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<. Such operation causes Low-Frequency (LF) power pulsations in the converter's dc links, leading to fluctuating dc link voltages and distorted phase currents. In this paper, a new duty-cycle dependent phase shift modulation scheme is proposed that eliminates such LF power pulsations and substantially increases the theoretical maximum transmittable power between primary and secondary sides compared to previous work. The new modulation scheme is developed on the basis of analytical considerations, which are supported by the results of numerical calculations, and verified by means of circuit simulations and experimental results. A hardware demonstrator originally designed for a rated power of <inline-formula<<tex-math notation="LaTeX"<$\text{8}\,$</tex-math<</inline-formula<kW when operated from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at the European low-voltage ac mains (<inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{ac,1}} = \text{230}\,{\rm V}$</tex-math<</inline-formula< line-to-neutral rms, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,1}} = \text{800}\,{\rm V}$</tex-math<</inline-formula<, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,2}} = \text{400}\,{\rm V}$</tex-math<</inline-formula<) is used for experimental verification. Since the operation with <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula< leads to an increase of the currents in the converter, the experimental verification is conducted at half voltages and for a reduced power of <inline-formula<<tex-math notation="LaTeX"<$\text{2}\,$</tex-math<</inline-formula<kW that is transferred from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at substantially different primary-side and secondary-side line frequencies of <inline-formula<<tex-math notation="LaTeX"<$f_{1} = \text{50}\,$</tex-math<</inline-formula<Hz and <inline-formula<<tex-math notation="LaTeX"<$f_{2} = \text{77}\,$</tex-math<</inline-formula<Hz. The measured results agree well with the simulated results. In particular, the dc link voltages show almost constant waveforms, which confirms the correct operation of the proposed modulation scheme. Ac-dc power converters dc-ac power converters ac-ac converters Dual Three-Phase Active Bridge Converter (D3ABC) topology Dual Active Bridge (DAB) converter four-port ac-dc/dc-ac converter Electrical engineering. Electronics. Nuclear engineering Florian Krismer verfasserin aut Johann W. Kolar verfasserin aut In IEEE Open Journal of Power Electronics IEEE, 2021 3(2022), Seite 705-722 (DE-627)1688451307 (DE-600)3006279-2 26441314 nnns volume:3 year:2022 pages:705-722 https://doi.org/10.1109/OJPEL.2022.3213274 kostenfrei https://doaj.org/article/c5a901bc7d9c43f4a455401e5467d606 kostenfrei https://ieeexplore.ieee.org/document/9915373/ kostenfrei https://doaj.org/toc/2644-1314 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 705-722 |
allfields_unstemmed |
10.1109/OJPEL.2022.3213274 doi (DE-627)DOAJ002213885 (DE-599)DOAJc5a901bc7d9c43f4a455401e5467d606 DE-627 ger DE-627 rakwb eng TK1-9971 Morris J. Heller verfasserin aut Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A recently introduced Dual Three-Phase Active Bridge Converter (D3ABC) provides two three-phase ac ports (ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), two dc ports (dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), and galvanic isolation between the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< (primary side) and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< (secondary side). Previously documented studies confirm that the D3ABC is generally capable of transferring power between all four ports. However, it has been found challenging to operate the converter if ac voltages with different line frequencies, <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula<, are present at the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<. Such operation causes Low-Frequency (LF) power pulsations in the converter's dc links, leading to fluctuating dc link voltages and distorted phase currents. In this paper, a new duty-cycle dependent phase shift modulation scheme is proposed that eliminates such LF power pulsations and substantially increases the theoretical maximum transmittable power between primary and secondary sides compared to previous work. The new modulation scheme is developed on the basis of analytical considerations, which are supported by the results of numerical calculations, and verified by means of circuit simulations and experimental results. A hardware demonstrator originally designed for a rated power of <inline-formula<<tex-math notation="LaTeX"<$\text{8}\,$</tex-math<</inline-formula<kW when operated from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at the European low-voltage ac mains (<inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{ac,1}} = \text{230}\,{\rm V}$</tex-math<</inline-formula< line-to-neutral rms, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,1}} = \text{800}\,{\rm V}$</tex-math<</inline-formula<, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,2}} = \text{400}\,{\rm V}$</tex-math<</inline-formula<) is used for experimental verification. Since the operation with <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula< leads to an increase of the currents in the converter, the experimental verification is conducted at half voltages and for a reduced power of <inline-formula<<tex-math notation="LaTeX"<$\text{2}\,$</tex-math<</inline-formula<kW that is transferred from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at substantially different primary-side and secondary-side line frequencies of <inline-formula<<tex-math notation="LaTeX"<$f_{1} = \text{50}\,$</tex-math<</inline-formula<Hz and <inline-formula<<tex-math notation="LaTeX"<$f_{2} = \text{77}\,$</tex-math<</inline-formula<Hz. The measured results agree well with the simulated results. In particular, the dc link voltages show almost constant waveforms, which confirms the correct operation of the proposed modulation scheme. Ac-dc power converters dc-ac power converters ac-ac converters Dual Three-Phase Active Bridge Converter (D3ABC) topology Dual Active Bridge (DAB) converter four-port ac-dc/dc-ac converter Electrical engineering. Electronics. Nuclear engineering Florian Krismer verfasserin aut Johann W. Kolar verfasserin aut In IEEE Open Journal of Power Electronics IEEE, 2021 3(2022), Seite 705-722 (DE-627)1688451307 (DE-600)3006279-2 26441314 nnns volume:3 year:2022 pages:705-722 https://doi.org/10.1109/OJPEL.2022.3213274 kostenfrei https://doaj.org/article/c5a901bc7d9c43f4a455401e5467d606 kostenfrei https://ieeexplore.ieee.org/document/9915373/ kostenfrei https://doaj.org/toc/2644-1314 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 705-722 |
allfieldsGer |
10.1109/OJPEL.2022.3213274 doi (DE-627)DOAJ002213885 (DE-599)DOAJc5a901bc7d9c43f4a455401e5467d606 DE-627 ger DE-627 rakwb eng TK1-9971 Morris J. Heller verfasserin aut Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A recently introduced Dual Three-Phase Active Bridge Converter (D3ABC) provides two three-phase ac ports (ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), two dc ports (dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), and galvanic isolation between the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< (primary side) and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< (secondary side). Previously documented studies confirm that the D3ABC is generally capable of transferring power between all four ports. However, it has been found challenging to operate the converter if ac voltages with different line frequencies, <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula<, are present at the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<. Such operation causes Low-Frequency (LF) power pulsations in the converter's dc links, leading to fluctuating dc link voltages and distorted phase currents. In this paper, a new duty-cycle dependent phase shift modulation scheme is proposed that eliminates such LF power pulsations and substantially increases the theoretical maximum transmittable power between primary and secondary sides compared to previous work. The new modulation scheme is developed on the basis of analytical considerations, which are supported by the results of numerical calculations, and verified by means of circuit simulations and experimental results. A hardware demonstrator originally designed for a rated power of <inline-formula<<tex-math notation="LaTeX"<$\text{8}\,$</tex-math<</inline-formula<kW when operated from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at the European low-voltage ac mains (<inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{ac,1}} = \text{230}\,{\rm V}$</tex-math<</inline-formula< line-to-neutral rms, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,1}} = \text{800}\,{\rm V}$</tex-math<</inline-formula<, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,2}} = \text{400}\,{\rm V}$</tex-math<</inline-formula<) is used for experimental verification. Since the operation with <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula< leads to an increase of the currents in the converter, the experimental verification is conducted at half voltages and for a reduced power of <inline-formula<<tex-math notation="LaTeX"<$\text{2}\,$</tex-math<</inline-formula<kW that is transferred from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at substantially different primary-side and secondary-side line frequencies of <inline-formula<<tex-math notation="LaTeX"<$f_{1} = \text{50}\,$</tex-math<</inline-formula<Hz and <inline-formula<<tex-math notation="LaTeX"<$f_{2} = \text{77}\,$</tex-math<</inline-formula<Hz. The measured results agree well with the simulated results. In particular, the dc link voltages show almost constant waveforms, which confirms the correct operation of the proposed modulation scheme. Ac-dc power converters dc-ac power converters ac-ac converters Dual Three-Phase Active Bridge Converter (D3ABC) topology Dual Active Bridge (DAB) converter four-port ac-dc/dc-ac converter Electrical engineering. Electronics. Nuclear engineering Florian Krismer verfasserin aut Johann W. Kolar verfasserin aut In IEEE Open Journal of Power Electronics IEEE, 2021 3(2022), Seite 705-722 (DE-627)1688451307 (DE-600)3006279-2 26441314 nnns volume:3 year:2022 pages:705-722 https://doi.org/10.1109/OJPEL.2022.3213274 kostenfrei https://doaj.org/article/c5a901bc7d9c43f4a455401e5467d606 kostenfrei https://ieeexplore.ieee.org/document/9915373/ kostenfrei https://doaj.org/toc/2644-1314 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 705-722 |
allfieldsSound |
10.1109/OJPEL.2022.3213274 doi (DE-627)DOAJ002213885 (DE-599)DOAJc5a901bc7d9c43f4a455401e5467d606 DE-627 ger DE-627 rakwb eng TK1-9971 Morris J. Heller verfasserin aut Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A recently introduced Dual Three-Phase Active Bridge Converter (D3ABC) provides two three-phase ac ports (ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), two dc ports (dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), and galvanic isolation between the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< (primary side) and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< (secondary side). Previously documented studies confirm that the D3ABC is generally capable of transferring power between all four ports. However, it has been found challenging to operate the converter if ac voltages with different line frequencies, <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula<, are present at the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<. Such operation causes Low-Frequency (LF) power pulsations in the converter's dc links, leading to fluctuating dc link voltages and distorted phase currents. In this paper, a new duty-cycle dependent phase shift modulation scheme is proposed that eliminates such LF power pulsations and substantially increases the theoretical maximum transmittable power between primary and secondary sides compared to previous work. The new modulation scheme is developed on the basis of analytical considerations, which are supported by the results of numerical calculations, and verified by means of circuit simulations and experimental results. A hardware demonstrator originally designed for a rated power of <inline-formula<<tex-math notation="LaTeX"<$\text{8}\,$</tex-math<</inline-formula<kW when operated from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at the European low-voltage ac mains (<inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{ac,1}} = \text{230}\,{\rm V}$</tex-math<</inline-formula< line-to-neutral rms, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,1}} = \text{800}\,{\rm V}$</tex-math<</inline-formula<, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,2}} = \text{400}\,{\rm V}$</tex-math<</inline-formula<) is used for experimental verification. Since the operation with <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula< leads to an increase of the currents in the converter, the experimental verification is conducted at half voltages and for a reduced power of <inline-formula<<tex-math notation="LaTeX"<$\text{2}\,$</tex-math<</inline-formula<kW that is transferred from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at substantially different primary-side and secondary-side line frequencies of <inline-formula<<tex-math notation="LaTeX"<$f_{1} = \text{50}\,$</tex-math<</inline-formula<Hz and <inline-formula<<tex-math notation="LaTeX"<$f_{2} = \text{77}\,$</tex-math<</inline-formula<Hz. The measured results agree well with the simulated results. In particular, the dc link voltages show almost constant waveforms, which confirms the correct operation of the proposed modulation scheme. Ac-dc power converters dc-ac power converters ac-ac converters Dual Three-Phase Active Bridge Converter (D3ABC) topology Dual Active Bridge (DAB) converter four-port ac-dc/dc-ac converter Electrical engineering. Electronics. Nuclear engineering Florian Krismer verfasserin aut Johann W. Kolar verfasserin aut In IEEE Open Journal of Power Electronics IEEE, 2021 3(2022), Seite 705-722 (DE-627)1688451307 (DE-600)3006279-2 26441314 nnns volume:3 year:2022 pages:705-722 https://doi.org/10.1109/OJPEL.2022.3213274 kostenfrei https://doaj.org/article/c5a901bc7d9c43f4a455401e5467d606 kostenfrei https://ieeexplore.ieee.org/document/9915373/ kostenfrei https://doaj.org/toc/2644-1314 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 705-722 |
language |
English |
source |
In IEEE Open Journal of Power Electronics 3(2022), Seite 705-722 volume:3 year:2022 pages:705-722 |
sourceStr |
In IEEE Open Journal of Power Electronics 3(2022), Seite 705-722 volume:3 year:2022 pages:705-722 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ac-dc power converters dc-ac power converters ac-ac converters Dual Three-Phase Active Bridge Converter (D3ABC) topology Dual Active Bridge (DAB) converter four-port ac-dc/dc-ac converter Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Open Journal of Power Electronics |
authorswithroles_txt_mv |
Morris J. Heller @@aut@@ Florian Krismer @@aut@@ Johann W. Kolar @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1688451307 |
id |
DOAJ002213885 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ002213885</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307021959.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/OJPEL.2022.3213274</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ002213885</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc5a901bc7d9c43f4a455401e5467d606</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Morris J. Heller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A recently introduced Dual Three-Phase Active Bridge Converter (D3ABC) provides two three-phase ac ports (ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), two dc ports (dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), and galvanic isolation between the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< (primary side) and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< (secondary side). Previously documented studies confirm that the D3ABC is generally capable of transferring power between all four ports. However, it has been found challenging to operate the converter if ac voltages with different line frequencies, <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula<, are present at the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<. Such operation causes Low-Frequency (LF) power pulsations in the converter's dc links, leading to fluctuating dc link voltages and distorted phase currents. In this paper, a new duty-cycle dependent phase shift modulation scheme is proposed that eliminates such LF power pulsations and substantially increases the theoretical maximum transmittable power between primary and secondary sides compared to previous work. The new modulation scheme is developed on the basis of analytical considerations, which are supported by the results of numerical calculations, and verified by means of circuit simulations and experimental results. A hardware demonstrator originally designed for a rated power of <inline-formula<<tex-math notation="LaTeX"<$\text{8}\,$</tex-math<</inline-formula<kW when operated from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at the European low-voltage ac mains (<inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{ac,1}} = \text{230}\,{\rm V}$</tex-math<</inline-formula< line-to-neutral rms, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,1}} = \text{800}\,{\rm V}$</tex-math<</inline-formula<, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,2}} = \text{400}\,{\rm V}$</tex-math<</inline-formula<) is used for experimental verification. Since the operation with <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula< leads to an increase of the currents in the converter, the experimental verification is conducted at half voltages and for a reduced power of <inline-formula<<tex-math notation="LaTeX"<$\text{2}\,$</tex-math<</inline-formula<kW that is transferred from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at substantially different primary-side and secondary-side line frequencies of <inline-formula<<tex-math notation="LaTeX"<$f_{1} = \text{50}\,$</tex-math<</inline-formula<Hz and <inline-formula<<tex-math notation="LaTeX"<$f_{2} = \text{77}\,$</tex-math<</inline-formula<Hz. The measured results agree well with the simulated results. In particular, the dc link voltages show almost constant waveforms, which confirms the correct operation of the proposed modulation scheme.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ac-dc power converters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dc-ac power converters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ac-ac converters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual Three-Phase Active Bridge Converter (D3ABC) topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual Active Bridge (DAB) converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">four-port ac-dc/dc-ac converter</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Florian Krismer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johann W. Kolar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Open Journal of Power Electronics</subfield><subfield code="d">IEEE, 2021</subfield><subfield code="g">3(2022), Seite 705-722</subfield><subfield code="w">(DE-627)1688451307</subfield><subfield code="w">(DE-600)3006279-2</subfield><subfield code="x">26441314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:705-722</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/OJPEL.2022.3213274</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c5a901bc7d9c43f4a455401e5467d606</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9915373/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2644-1314</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield><subfield code="h">705-722</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Morris J. Heller |
spellingShingle |
Morris J. Heller misc TK1-9971 misc Ac-dc power converters misc dc-ac power converters misc ac-ac converters misc Dual Three-Phase Active Bridge Converter (D3ABC) topology misc Dual Active Bridge (DAB) converter misc four-port ac-dc/dc-ac converter misc Electrical engineering. Electronics. Nuclear engineering Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations |
authorStr |
Morris J. Heller |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1688451307 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
26441314 |
topic_title |
TK1-9971 Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations Ac-dc power converters dc-ac power converters ac-ac converters Dual Three-Phase Active Bridge Converter (D3ABC) topology Dual Active Bridge (DAB) converter four-port ac-dc/dc-ac converter |
topic |
misc TK1-9971 misc Ac-dc power converters misc dc-ac power converters misc ac-ac converters misc Dual Three-Phase Active Bridge Converter (D3ABC) topology misc Dual Active Bridge (DAB) converter misc four-port ac-dc/dc-ac converter misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Ac-dc power converters misc dc-ac power converters misc ac-ac converters misc Dual Three-Phase Active Bridge Converter (D3ABC) topology misc Dual Active Bridge (DAB) converter misc four-port ac-dc/dc-ac converter misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Ac-dc power converters misc dc-ac power converters misc ac-ac converters misc Dual Three-Phase Active Bridge Converter (D3ABC) topology misc Dual Active Bridge (DAB) converter misc four-port ac-dc/dc-ac converter misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Open Journal of Power Electronics |
hierarchy_parent_id |
1688451307 |
hierarchy_top_title |
IEEE Open Journal of Power Electronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1688451307 (DE-600)3006279-2 |
title |
Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations |
ctrlnum |
(DE-627)DOAJ002213885 (DE-599)DOAJc5a901bc7d9c43f4a455401e5467d606 |
title_full |
Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations |
author_sort |
Morris J. Heller |
journal |
IEEE Open Journal of Power Electronics |
journalStr |
IEEE Open Journal of Power Electronics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
705 |
author_browse |
Morris J. Heller Florian Krismer Johann W. Kolar |
container_volume |
3 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Morris J. Heller |
doi_str_mv |
10.1109/OJPEL.2022.3213274 |
author2-role |
verfasserin |
title_sort |
duty-cycle dependent phase shift modulation of dual three-phase active bridge four-port ac–dc/dc–ac converter eliminating low frequency power pulsations |
callnumber |
TK1-9971 |
title_auth |
Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations |
abstract |
A recently introduced Dual Three-Phase Active Bridge Converter (D3ABC) provides two three-phase ac ports (ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), two dc ports (dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), and galvanic isolation between the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< (primary side) and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< (secondary side). Previously documented studies confirm that the D3ABC is generally capable of transferring power between all four ports. However, it has been found challenging to operate the converter if ac voltages with different line frequencies, <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula<, are present at the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<. Such operation causes Low-Frequency (LF) power pulsations in the converter's dc links, leading to fluctuating dc link voltages and distorted phase currents. In this paper, a new duty-cycle dependent phase shift modulation scheme is proposed that eliminates such LF power pulsations and substantially increases the theoretical maximum transmittable power between primary and secondary sides compared to previous work. The new modulation scheme is developed on the basis of analytical considerations, which are supported by the results of numerical calculations, and verified by means of circuit simulations and experimental results. A hardware demonstrator originally designed for a rated power of <inline-formula<<tex-math notation="LaTeX"<$\text{8}\,$</tex-math<</inline-formula<kW when operated from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at the European low-voltage ac mains (<inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{ac,1}} = \text{230}\,{\rm V}$</tex-math<</inline-formula< line-to-neutral rms, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,1}} = \text{800}\,{\rm V}$</tex-math<</inline-formula<, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,2}} = \text{400}\,{\rm V}$</tex-math<</inline-formula<) is used for experimental verification. Since the operation with <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula< leads to an increase of the currents in the converter, the experimental verification is conducted at half voltages and for a reduced power of <inline-formula<<tex-math notation="LaTeX"<$\text{2}\,$</tex-math<</inline-formula<kW that is transferred from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at substantially different primary-side and secondary-side line frequencies of <inline-formula<<tex-math notation="LaTeX"<$f_{1} = \text{50}\,$</tex-math<</inline-formula<Hz and <inline-formula<<tex-math notation="LaTeX"<$f_{2} = \text{77}\,$</tex-math<</inline-formula<Hz. The measured results agree well with the simulated results. In particular, the dc link voltages show almost constant waveforms, which confirms the correct operation of the proposed modulation scheme. |
abstractGer |
A recently introduced Dual Three-Phase Active Bridge Converter (D3ABC) provides two three-phase ac ports (ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), two dc ports (dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), and galvanic isolation between the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< (primary side) and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< (secondary side). Previously documented studies confirm that the D3ABC is generally capable of transferring power between all four ports. However, it has been found challenging to operate the converter if ac voltages with different line frequencies, <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula<, are present at the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<. Such operation causes Low-Frequency (LF) power pulsations in the converter's dc links, leading to fluctuating dc link voltages and distorted phase currents. In this paper, a new duty-cycle dependent phase shift modulation scheme is proposed that eliminates such LF power pulsations and substantially increases the theoretical maximum transmittable power between primary and secondary sides compared to previous work. The new modulation scheme is developed on the basis of analytical considerations, which are supported by the results of numerical calculations, and verified by means of circuit simulations and experimental results. A hardware demonstrator originally designed for a rated power of <inline-formula<<tex-math notation="LaTeX"<$\text{8}\,$</tex-math<</inline-formula<kW when operated from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at the European low-voltage ac mains (<inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{ac,1}} = \text{230}\,{\rm V}$</tex-math<</inline-formula< line-to-neutral rms, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,1}} = \text{800}\,{\rm V}$</tex-math<</inline-formula<, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,2}} = \text{400}\,{\rm V}$</tex-math<</inline-formula<) is used for experimental verification. Since the operation with <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula< leads to an increase of the currents in the converter, the experimental verification is conducted at half voltages and for a reduced power of <inline-formula<<tex-math notation="LaTeX"<$\text{2}\,$</tex-math<</inline-formula<kW that is transferred from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at substantially different primary-side and secondary-side line frequencies of <inline-formula<<tex-math notation="LaTeX"<$f_{1} = \text{50}\,$</tex-math<</inline-formula<Hz and <inline-formula<<tex-math notation="LaTeX"<$f_{2} = \text{77}\,$</tex-math<</inline-formula<Hz. The measured results agree well with the simulated results. In particular, the dc link voltages show almost constant waveforms, which confirms the correct operation of the proposed modulation scheme. |
abstract_unstemmed |
A recently introduced Dual Three-Phase Active Bridge Converter (D3ABC) provides two three-phase ac ports (ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), two dc ports (dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), and galvanic isolation between the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< (primary side) and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< (secondary side). Previously documented studies confirm that the D3ABC is generally capable of transferring power between all four ports. However, it has been found challenging to operate the converter if ac voltages with different line frequencies, <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula<, are present at the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<. Such operation causes Low-Frequency (LF) power pulsations in the converter's dc links, leading to fluctuating dc link voltages and distorted phase currents. In this paper, a new duty-cycle dependent phase shift modulation scheme is proposed that eliminates such LF power pulsations and substantially increases the theoretical maximum transmittable power between primary and secondary sides compared to previous work. The new modulation scheme is developed on the basis of analytical considerations, which are supported by the results of numerical calculations, and verified by means of circuit simulations and experimental results. A hardware demonstrator originally designed for a rated power of <inline-formula<<tex-math notation="LaTeX"<$\text{8}\,$</tex-math<</inline-formula<kW when operated from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at the European low-voltage ac mains (<inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{ac,1}} = \text{230}\,{\rm V}$</tex-math<</inline-formula< line-to-neutral rms, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,1}} = \text{800}\,{\rm V}$</tex-math<</inline-formula<, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,2}} = \text{400}\,{\rm V}$</tex-math<</inline-formula<) is used for experimental verification. Since the operation with <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula< leads to an increase of the currents in the converter, the experimental verification is conducted at half voltages and for a reduced power of <inline-formula<<tex-math notation="LaTeX"<$\text{2}\,$</tex-math<</inline-formula<kW that is transferred from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at substantially different primary-side and secondary-side line frequencies of <inline-formula<<tex-math notation="LaTeX"<$f_{1} = \text{50}\,$</tex-math<</inline-formula<Hz and <inline-formula<<tex-math notation="LaTeX"<$f_{2} = \text{77}\,$</tex-math<</inline-formula<Hz. The measured results agree well with the simulated results. In particular, the dc link voltages show almost constant waveforms, which confirms the correct operation of the proposed modulation scheme. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations |
url |
https://doi.org/10.1109/OJPEL.2022.3213274 https://doaj.org/article/c5a901bc7d9c43f4a455401e5467d606 https://ieeexplore.ieee.org/document/9915373/ https://doaj.org/toc/2644-1314 |
remote_bool |
true |
author2 |
Florian Krismer Johann W. Kolar |
author2Str |
Florian Krismer Johann W. Kolar |
ppnlink |
1688451307 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/OJPEL.2022.3213274 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:20:11.772Z |
_version_ |
1803605677728333824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ002213885</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307021959.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/OJPEL.2022.3213274</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ002213885</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc5a901bc7d9c43f4a455401e5467d606</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Morris J. Heller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Duty-Cycle Dependent Phase Shift Modulation of Dual Three-Phase Active Bridge Four-Port AC–DC/DC–AC Converter Eliminating Low Frequency Power Pulsations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A recently introduced Dual Three-Phase Active Bridge Converter (D3ABC) provides two three-phase ac ports (ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), two dc ports (dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<), and galvanic isolation between the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< (primary side) and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<, dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< (secondary side). Previously documented studies confirm that the D3ABC is generally capable of transferring power between all four ports. However, it has been found challenging to operate the converter if ac voltages with different line frequencies, <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula<, are present at the ports ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< and ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula<. Such operation causes Low-Frequency (LF) power pulsations in the converter's dc links, leading to fluctuating dc link voltages and distorted phase currents. In this paper, a new duty-cycle dependent phase shift modulation scheme is proposed that eliminates such LF power pulsations and substantially increases the theoretical maximum transmittable power between primary and secondary sides compared to previous work. The new modulation scheme is developed on the basis of analytical considerations, which are supported by the results of numerical calculations, and verified by means of circuit simulations and experimental results. A hardware demonstrator originally designed for a rated power of <inline-formula<<tex-math notation="LaTeX"<$\text{8}\,$</tex-math<</inline-formula<kW when operated from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to dc<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at the European low-voltage ac mains (<inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{ac,1}} = \text{230}\,{\rm V}$</tex-math<</inline-formula< line-to-neutral rms, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,1}} = \text{800}\,{\rm V}$</tex-math<</inline-formula<, <inline-formula<<tex-math notation="LaTeX"<$V_{\mathrm{dc,2}} = \text{400}\,{\rm V}$</tex-math<</inline-formula<) is used for experimental verification. Since the operation with <inline-formula<<tex-math notation="LaTeX"<$f_{1} \ne f_{2}$</tex-math<</inline-formula< leads to an increase of the currents in the converter, the experimental verification is conducted at half voltages and for a reduced power of <inline-formula<<tex-math notation="LaTeX"<$\text{2}\,$</tex-math<</inline-formula<kW that is transferred from ac<inline-formula<<tex-math notation="LaTeX"<${}_{1}$</tex-math<</inline-formula< to ac<inline-formula<<tex-math notation="LaTeX"<${}_{2}$</tex-math<</inline-formula< at substantially different primary-side and secondary-side line frequencies of <inline-formula<<tex-math notation="LaTeX"<$f_{1} = \text{50}\,$</tex-math<</inline-formula<Hz and <inline-formula<<tex-math notation="LaTeX"<$f_{2} = \text{77}\,$</tex-math<</inline-formula<Hz. The measured results agree well with the simulated results. In particular, the dc link voltages show almost constant waveforms, which confirms the correct operation of the proposed modulation scheme.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ac-dc power converters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dc-ac power converters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ac-ac converters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual Three-Phase Active Bridge Converter (D3ABC) topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual Active Bridge (DAB) converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">four-port ac-dc/dc-ac converter</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Florian Krismer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johann W. Kolar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Open Journal of Power Electronics</subfield><subfield code="d">IEEE, 2021</subfield><subfield code="g">3(2022), Seite 705-722</subfield><subfield code="w">(DE-627)1688451307</subfield><subfield code="w">(DE-600)3006279-2</subfield><subfield code="x">26441314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:705-722</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/OJPEL.2022.3213274</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c5a901bc7d9c43f4a455401e5467d606</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9915373/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2644-1314</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield><subfield code="h">705-722</subfield></datafield></record></collection>
|
score |
7.401039 |