Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains
Human neuroimaging during cognitive tasks has provided unique and important insights into the neurobiology of cognition. However, the vast majority of research relies on group aggregate or average statistical maps of activity, which do not fully capture the rich intersubject variability in brain fun...
Ausführliche Beschreibung
Autor*in: |
Colin Hawco [verfasserIn] Erin W. Dickie [verfasserIn] Grace Jacobs [verfasserIn] Zafiris J. Daskalakis [verfasserIn] Aristotle N. Voineskos [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: NeuroImage - Elsevier, 2020, 231(2021), Seite 117823- |
---|---|
Übergeordnetes Werk: |
volume:231 ; year:2021 ; pages:117823- |
Links: |
---|
DOI / URN: |
10.1016/j.neuroimage.2021.117823 |
---|
Katalog-ID: |
DOAJ00261426X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ00261426X | ||
003 | DE-627 | ||
005 | 20230309171259.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neuroimage.2021.117823 |2 doi | |
035 | |a (DE-627)DOAJ00261426X | ||
035 | |a (DE-599)DOAJbb30d4440ea748ce958ed775b32f4019 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC321-571 | |
100 | 0 | |a Colin Hawco |e verfasserin |4 aut | |
245 | 1 | 0 | |a Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Human neuroimaging during cognitive tasks has provided unique and important insights into the neurobiology of cognition. However, the vast majority of research relies on group aggregate or average statistical maps of activity, which do not fully capture the rich intersubject variability in brain function. In order to fully understand the neurobiology of cognitive processes, it is necessary to explore the range of variability in activation patterns across individuals. To better characterize individual variability, hierarchical clustering was performed separately on six fMRI tasks in 822 participants from the Human Connectome Project. Across all tasks, clusters ranged from a predominantly ‘deactivating’ pattern towards a more ‘activating’ pattern of brain activity, with significant differences in out-of-scanner cognitive test scores between clusters. Cluster stability was assessed via a resampling approach; a cluster probability matrix was generated, as the probability of any pair of participants clustering together when both were present in a random subsample. Rather than forming distinct clusters, participants fell along a spectrum or into pseudo-clusters without clear boundaries. A principal components analysis of the cluster probability matrix revealed three components explaining over 90% of the variance in clustering. Plotting participants in this lower-dimensional ‘similarity space’ revealed manifolds of variations along an S ‘snake’ shaped spectrum or a folded circle or ‘tortilla’ shape. The ‘snake’ shape was present in tasks where individual variability related to activity along covarying networks, while the ‘tortilla’ shape represented multiple networks which varied independently. | ||
653 | 0 | |a Neurosciences. Biological psychiatry. Neuropsychiatry | |
700 | 0 | |a Erin W. Dickie |e verfasserin |4 aut | |
700 | 0 | |a Grace Jacobs |e verfasserin |4 aut | |
700 | 0 | |a Zafiris J. Daskalakis |e verfasserin |4 aut | |
700 | 0 | |a Aristotle N. Voineskos |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t NeuroImage |d Elsevier, 2020 |g 231(2021), Seite 117823- |w (DE-627)268125503 |w (DE-600)1471418-8 |x 10959572 |7 nnns |
773 | 1 | 8 | |g volume:231 |g year:2021 |g pages:117823- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.neuroimage.2021.117823 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/bb30d4440ea748ce958ed775b32f4019 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1053811921001002 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1095-9572 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 231 |j 2021 |h 117823- |
author_variant |
c h ch e w d ewd g j gj z j d zjd a n v anv |
---|---|
matchkey_str |
article:10959572:2021----::oigeodhmasbrusndmninobanciiyncgiie |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
RC |
publishDate |
2021 |
allfields |
10.1016/j.neuroimage.2021.117823 doi (DE-627)DOAJ00261426X (DE-599)DOAJbb30d4440ea748ce958ed775b32f4019 DE-627 ger DE-627 rakwb eng RC321-571 Colin Hawco verfasserin aut Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Human neuroimaging during cognitive tasks has provided unique and important insights into the neurobiology of cognition. However, the vast majority of research relies on group aggregate or average statistical maps of activity, which do not fully capture the rich intersubject variability in brain function. In order to fully understand the neurobiology of cognitive processes, it is necessary to explore the range of variability in activation patterns across individuals. To better characterize individual variability, hierarchical clustering was performed separately on six fMRI tasks in 822 participants from the Human Connectome Project. Across all tasks, clusters ranged from a predominantly ‘deactivating’ pattern towards a more ‘activating’ pattern of brain activity, with significant differences in out-of-scanner cognitive test scores between clusters. Cluster stability was assessed via a resampling approach; a cluster probability matrix was generated, as the probability of any pair of participants clustering together when both were present in a random subsample. Rather than forming distinct clusters, participants fell along a spectrum or into pseudo-clusters without clear boundaries. A principal components analysis of the cluster probability matrix revealed three components explaining over 90% of the variance in clustering. Plotting participants in this lower-dimensional ‘similarity space’ revealed manifolds of variations along an S ‘snake’ shaped spectrum or a folded circle or ‘tortilla’ shape. The ‘snake’ shape was present in tasks where individual variability related to activity along covarying networks, while the ‘tortilla’ shape represented multiple networks which varied independently. Neurosciences. Biological psychiatry. Neuropsychiatry Erin W. Dickie verfasserin aut Grace Jacobs verfasserin aut Zafiris J. Daskalakis verfasserin aut Aristotle N. Voineskos verfasserin aut In NeuroImage Elsevier, 2020 231(2021), Seite 117823- (DE-627)268125503 (DE-600)1471418-8 10959572 nnns volume:231 year:2021 pages:117823- https://doi.org/10.1016/j.neuroimage.2021.117823 kostenfrei https://doaj.org/article/bb30d4440ea748ce958ed775b32f4019 kostenfrei http://www.sciencedirect.com/science/article/pii/S1053811921001002 kostenfrei https://doaj.org/toc/1095-9572 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 231 2021 117823- |
spelling |
10.1016/j.neuroimage.2021.117823 doi (DE-627)DOAJ00261426X (DE-599)DOAJbb30d4440ea748ce958ed775b32f4019 DE-627 ger DE-627 rakwb eng RC321-571 Colin Hawco verfasserin aut Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Human neuroimaging during cognitive tasks has provided unique and important insights into the neurobiology of cognition. However, the vast majority of research relies on group aggregate or average statistical maps of activity, which do not fully capture the rich intersubject variability in brain function. In order to fully understand the neurobiology of cognitive processes, it is necessary to explore the range of variability in activation patterns across individuals. To better characterize individual variability, hierarchical clustering was performed separately on six fMRI tasks in 822 participants from the Human Connectome Project. Across all tasks, clusters ranged from a predominantly ‘deactivating’ pattern towards a more ‘activating’ pattern of brain activity, with significant differences in out-of-scanner cognitive test scores between clusters. Cluster stability was assessed via a resampling approach; a cluster probability matrix was generated, as the probability of any pair of participants clustering together when both were present in a random subsample. Rather than forming distinct clusters, participants fell along a spectrum or into pseudo-clusters without clear boundaries. A principal components analysis of the cluster probability matrix revealed three components explaining over 90% of the variance in clustering. Plotting participants in this lower-dimensional ‘similarity space’ revealed manifolds of variations along an S ‘snake’ shaped spectrum or a folded circle or ‘tortilla’ shape. The ‘snake’ shape was present in tasks where individual variability related to activity along covarying networks, while the ‘tortilla’ shape represented multiple networks which varied independently. Neurosciences. Biological psychiatry. Neuropsychiatry Erin W. Dickie verfasserin aut Grace Jacobs verfasserin aut Zafiris J. Daskalakis verfasserin aut Aristotle N. Voineskos verfasserin aut In NeuroImage Elsevier, 2020 231(2021), Seite 117823- (DE-627)268125503 (DE-600)1471418-8 10959572 nnns volume:231 year:2021 pages:117823- https://doi.org/10.1016/j.neuroimage.2021.117823 kostenfrei https://doaj.org/article/bb30d4440ea748ce958ed775b32f4019 kostenfrei http://www.sciencedirect.com/science/article/pii/S1053811921001002 kostenfrei https://doaj.org/toc/1095-9572 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 231 2021 117823- |
allfields_unstemmed |
10.1016/j.neuroimage.2021.117823 doi (DE-627)DOAJ00261426X (DE-599)DOAJbb30d4440ea748ce958ed775b32f4019 DE-627 ger DE-627 rakwb eng RC321-571 Colin Hawco verfasserin aut Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Human neuroimaging during cognitive tasks has provided unique and important insights into the neurobiology of cognition. However, the vast majority of research relies on group aggregate or average statistical maps of activity, which do not fully capture the rich intersubject variability in brain function. In order to fully understand the neurobiology of cognitive processes, it is necessary to explore the range of variability in activation patterns across individuals. To better characterize individual variability, hierarchical clustering was performed separately on six fMRI tasks in 822 participants from the Human Connectome Project. Across all tasks, clusters ranged from a predominantly ‘deactivating’ pattern towards a more ‘activating’ pattern of brain activity, with significant differences in out-of-scanner cognitive test scores between clusters. Cluster stability was assessed via a resampling approach; a cluster probability matrix was generated, as the probability of any pair of participants clustering together when both were present in a random subsample. Rather than forming distinct clusters, participants fell along a spectrum or into pseudo-clusters without clear boundaries. A principal components analysis of the cluster probability matrix revealed three components explaining over 90% of the variance in clustering. Plotting participants in this lower-dimensional ‘similarity space’ revealed manifolds of variations along an S ‘snake’ shaped spectrum or a folded circle or ‘tortilla’ shape. The ‘snake’ shape was present in tasks where individual variability related to activity along covarying networks, while the ‘tortilla’ shape represented multiple networks which varied independently. Neurosciences. Biological psychiatry. Neuropsychiatry Erin W. Dickie verfasserin aut Grace Jacobs verfasserin aut Zafiris J. Daskalakis verfasserin aut Aristotle N. Voineskos verfasserin aut In NeuroImage Elsevier, 2020 231(2021), Seite 117823- (DE-627)268125503 (DE-600)1471418-8 10959572 nnns volume:231 year:2021 pages:117823- https://doi.org/10.1016/j.neuroimage.2021.117823 kostenfrei https://doaj.org/article/bb30d4440ea748ce958ed775b32f4019 kostenfrei http://www.sciencedirect.com/science/article/pii/S1053811921001002 kostenfrei https://doaj.org/toc/1095-9572 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 231 2021 117823- |
allfieldsGer |
10.1016/j.neuroimage.2021.117823 doi (DE-627)DOAJ00261426X (DE-599)DOAJbb30d4440ea748ce958ed775b32f4019 DE-627 ger DE-627 rakwb eng RC321-571 Colin Hawco verfasserin aut Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Human neuroimaging during cognitive tasks has provided unique and important insights into the neurobiology of cognition. However, the vast majority of research relies on group aggregate or average statistical maps of activity, which do not fully capture the rich intersubject variability in brain function. In order to fully understand the neurobiology of cognitive processes, it is necessary to explore the range of variability in activation patterns across individuals. To better characterize individual variability, hierarchical clustering was performed separately on six fMRI tasks in 822 participants from the Human Connectome Project. Across all tasks, clusters ranged from a predominantly ‘deactivating’ pattern towards a more ‘activating’ pattern of brain activity, with significant differences in out-of-scanner cognitive test scores between clusters. Cluster stability was assessed via a resampling approach; a cluster probability matrix was generated, as the probability of any pair of participants clustering together when both were present in a random subsample. Rather than forming distinct clusters, participants fell along a spectrum or into pseudo-clusters without clear boundaries. A principal components analysis of the cluster probability matrix revealed three components explaining over 90% of the variance in clustering. Plotting participants in this lower-dimensional ‘similarity space’ revealed manifolds of variations along an S ‘snake’ shaped spectrum or a folded circle or ‘tortilla’ shape. The ‘snake’ shape was present in tasks where individual variability related to activity along covarying networks, while the ‘tortilla’ shape represented multiple networks which varied independently. Neurosciences. Biological psychiatry. Neuropsychiatry Erin W. Dickie verfasserin aut Grace Jacobs verfasserin aut Zafiris J. Daskalakis verfasserin aut Aristotle N. Voineskos verfasserin aut In NeuroImage Elsevier, 2020 231(2021), Seite 117823- (DE-627)268125503 (DE-600)1471418-8 10959572 nnns volume:231 year:2021 pages:117823- https://doi.org/10.1016/j.neuroimage.2021.117823 kostenfrei https://doaj.org/article/bb30d4440ea748ce958ed775b32f4019 kostenfrei http://www.sciencedirect.com/science/article/pii/S1053811921001002 kostenfrei https://doaj.org/toc/1095-9572 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 231 2021 117823- |
allfieldsSound |
10.1016/j.neuroimage.2021.117823 doi (DE-627)DOAJ00261426X (DE-599)DOAJbb30d4440ea748ce958ed775b32f4019 DE-627 ger DE-627 rakwb eng RC321-571 Colin Hawco verfasserin aut Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Human neuroimaging during cognitive tasks has provided unique and important insights into the neurobiology of cognition. However, the vast majority of research relies on group aggregate or average statistical maps of activity, which do not fully capture the rich intersubject variability in brain function. In order to fully understand the neurobiology of cognitive processes, it is necessary to explore the range of variability in activation patterns across individuals. To better characterize individual variability, hierarchical clustering was performed separately on six fMRI tasks in 822 participants from the Human Connectome Project. Across all tasks, clusters ranged from a predominantly ‘deactivating’ pattern towards a more ‘activating’ pattern of brain activity, with significant differences in out-of-scanner cognitive test scores between clusters. Cluster stability was assessed via a resampling approach; a cluster probability matrix was generated, as the probability of any pair of participants clustering together when both were present in a random subsample. Rather than forming distinct clusters, participants fell along a spectrum or into pseudo-clusters without clear boundaries. A principal components analysis of the cluster probability matrix revealed three components explaining over 90% of the variance in clustering. Plotting participants in this lower-dimensional ‘similarity space’ revealed manifolds of variations along an S ‘snake’ shaped spectrum or a folded circle or ‘tortilla’ shape. The ‘snake’ shape was present in tasks where individual variability related to activity along covarying networks, while the ‘tortilla’ shape represented multiple networks which varied independently. Neurosciences. Biological psychiatry. Neuropsychiatry Erin W. Dickie verfasserin aut Grace Jacobs verfasserin aut Zafiris J. Daskalakis verfasserin aut Aristotle N. Voineskos verfasserin aut In NeuroImage Elsevier, 2020 231(2021), Seite 117823- (DE-627)268125503 (DE-600)1471418-8 10959572 nnns volume:231 year:2021 pages:117823- https://doi.org/10.1016/j.neuroimage.2021.117823 kostenfrei https://doaj.org/article/bb30d4440ea748ce958ed775b32f4019 kostenfrei http://www.sciencedirect.com/science/article/pii/S1053811921001002 kostenfrei https://doaj.org/toc/1095-9572 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 231 2021 117823- |
language |
English |
source |
In NeuroImage 231(2021), Seite 117823- volume:231 year:2021 pages:117823- |
sourceStr |
In NeuroImage 231(2021), Seite 117823- volume:231 year:2021 pages:117823- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Neurosciences. Biological psychiatry. Neuropsychiatry |
isfreeaccess_bool |
true |
container_title |
NeuroImage |
authorswithroles_txt_mv |
Colin Hawco @@aut@@ Erin W. Dickie @@aut@@ Grace Jacobs @@aut@@ Zafiris J. Daskalakis @@aut@@ Aristotle N. Voineskos @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
268125503 |
id |
DOAJ00261426X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ00261426X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309171259.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neuroimage.2021.117823</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ00261426X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbb30d4440ea748ce958ed775b32f4019</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC321-571</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Colin Hawco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Human neuroimaging during cognitive tasks has provided unique and important insights into the neurobiology of cognition. However, the vast majority of research relies on group aggregate or average statistical maps of activity, which do not fully capture the rich intersubject variability in brain function. In order to fully understand the neurobiology of cognitive processes, it is necessary to explore the range of variability in activation patterns across individuals. To better characterize individual variability, hierarchical clustering was performed separately on six fMRI tasks in 822 participants from the Human Connectome Project. Across all tasks, clusters ranged from a predominantly ‘deactivating’ pattern towards a more ‘activating’ pattern of brain activity, with significant differences in out-of-scanner cognitive test scores between clusters. Cluster stability was assessed via a resampling approach; a cluster probability matrix was generated, as the probability of any pair of participants clustering together when both were present in a random subsample. Rather than forming distinct clusters, participants fell along a spectrum or into pseudo-clusters without clear boundaries. A principal components analysis of the cluster probability matrix revealed three components explaining over 90% of the variance in clustering. Plotting participants in this lower-dimensional ‘similarity space’ revealed manifolds of variations along an S ‘snake’ shaped spectrum or a folded circle or ‘tortilla’ shape. The ‘snake’ shape was present in tasks where individual variability related to activity along covarying networks, while the ‘tortilla’ shape represented multiple networks which varied independently.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences. Biological psychiatry. Neuropsychiatry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Erin W. Dickie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Grace Jacobs</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zafiris J. Daskalakis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aristotle N. Voineskos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">NeuroImage</subfield><subfield code="d">Elsevier, 2020</subfield><subfield code="g">231(2021), Seite 117823-</subfield><subfield code="w">(DE-627)268125503</subfield><subfield code="w">(DE-600)1471418-8</subfield><subfield code="x">10959572</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:231</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:117823-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neuroimage.2021.117823</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bb30d4440ea748ce958ed775b32f4019</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1053811921001002</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1095-9572</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">231</subfield><subfield code="j">2021</subfield><subfield code="h">117823-</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Colin Hawco |
spellingShingle |
Colin Hawco misc RC321-571 misc Neurosciences. Biological psychiatry. Neuropsychiatry Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains |
authorStr |
Colin Hawco |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268125503 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC321-571 |
illustrated |
Not Illustrated |
issn |
10959572 |
topic_title |
RC321-571 Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains |
topic |
misc RC321-571 misc Neurosciences. Biological psychiatry. Neuropsychiatry |
topic_unstemmed |
misc RC321-571 misc Neurosciences. Biological psychiatry. Neuropsychiatry |
topic_browse |
misc RC321-571 misc Neurosciences. Biological psychiatry. Neuropsychiatry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
NeuroImage |
hierarchy_parent_id |
268125503 |
hierarchy_top_title |
NeuroImage |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)268125503 (DE-600)1471418-8 |
title |
Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains |
ctrlnum |
(DE-627)DOAJ00261426X (DE-599)DOAJbb30d4440ea748ce958ed775b32f4019 |
title_full |
Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains |
author_sort |
Colin Hawco |
journal |
NeuroImage |
journalStr |
NeuroImage |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
117823 |
author_browse |
Colin Hawco Erin W. Dickie Grace Jacobs Zafiris J. Daskalakis Aristotle N. Voineskos |
container_volume |
231 |
class |
RC321-571 |
format_se |
Elektronische Aufsätze |
author-letter |
Colin Hawco |
doi_str_mv |
10.1016/j.neuroimage.2021.117823 |
author2-role |
verfasserin |
title_sort |
moving beyond the mean: subgroups and dimensions of brain activity and cognitive performance across domains |
callnumber |
RC321-571 |
title_auth |
Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains |
abstract |
Human neuroimaging during cognitive tasks has provided unique and important insights into the neurobiology of cognition. However, the vast majority of research relies on group aggregate or average statistical maps of activity, which do not fully capture the rich intersubject variability in brain function. In order to fully understand the neurobiology of cognitive processes, it is necessary to explore the range of variability in activation patterns across individuals. To better characterize individual variability, hierarchical clustering was performed separately on six fMRI tasks in 822 participants from the Human Connectome Project. Across all tasks, clusters ranged from a predominantly ‘deactivating’ pattern towards a more ‘activating’ pattern of brain activity, with significant differences in out-of-scanner cognitive test scores between clusters. Cluster stability was assessed via a resampling approach; a cluster probability matrix was generated, as the probability of any pair of participants clustering together when both were present in a random subsample. Rather than forming distinct clusters, participants fell along a spectrum or into pseudo-clusters without clear boundaries. A principal components analysis of the cluster probability matrix revealed three components explaining over 90% of the variance in clustering. Plotting participants in this lower-dimensional ‘similarity space’ revealed manifolds of variations along an S ‘snake’ shaped spectrum or a folded circle or ‘tortilla’ shape. The ‘snake’ shape was present in tasks where individual variability related to activity along covarying networks, while the ‘tortilla’ shape represented multiple networks which varied independently. |
abstractGer |
Human neuroimaging during cognitive tasks has provided unique and important insights into the neurobiology of cognition. However, the vast majority of research relies on group aggregate or average statistical maps of activity, which do not fully capture the rich intersubject variability in brain function. In order to fully understand the neurobiology of cognitive processes, it is necessary to explore the range of variability in activation patterns across individuals. To better characterize individual variability, hierarchical clustering was performed separately on six fMRI tasks in 822 participants from the Human Connectome Project. Across all tasks, clusters ranged from a predominantly ‘deactivating’ pattern towards a more ‘activating’ pattern of brain activity, with significant differences in out-of-scanner cognitive test scores between clusters. Cluster stability was assessed via a resampling approach; a cluster probability matrix was generated, as the probability of any pair of participants clustering together when both were present in a random subsample. Rather than forming distinct clusters, participants fell along a spectrum or into pseudo-clusters without clear boundaries. A principal components analysis of the cluster probability matrix revealed three components explaining over 90% of the variance in clustering. Plotting participants in this lower-dimensional ‘similarity space’ revealed manifolds of variations along an S ‘snake’ shaped spectrum or a folded circle or ‘tortilla’ shape. The ‘snake’ shape was present in tasks where individual variability related to activity along covarying networks, while the ‘tortilla’ shape represented multiple networks which varied independently. |
abstract_unstemmed |
Human neuroimaging during cognitive tasks has provided unique and important insights into the neurobiology of cognition. However, the vast majority of research relies on group aggregate or average statistical maps of activity, which do not fully capture the rich intersubject variability in brain function. In order to fully understand the neurobiology of cognitive processes, it is necessary to explore the range of variability in activation patterns across individuals. To better characterize individual variability, hierarchical clustering was performed separately on six fMRI tasks in 822 participants from the Human Connectome Project. Across all tasks, clusters ranged from a predominantly ‘deactivating’ pattern towards a more ‘activating’ pattern of brain activity, with significant differences in out-of-scanner cognitive test scores between clusters. Cluster stability was assessed via a resampling approach; a cluster probability matrix was generated, as the probability of any pair of participants clustering together when both were present in a random subsample. Rather than forming distinct clusters, participants fell along a spectrum or into pseudo-clusters without clear boundaries. A principal components analysis of the cluster probability matrix revealed three components explaining over 90% of the variance in clustering. Plotting participants in this lower-dimensional ‘similarity space’ revealed manifolds of variations along an S ‘snake’ shaped spectrum or a folded circle or ‘tortilla’ shape. The ‘snake’ shape was present in tasks where individual variability related to activity along covarying networks, while the ‘tortilla’ shape represented multiple networks which varied independently. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains |
url |
https://doi.org/10.1016/j.neuroimage.2021.117823 https://doaj.org/article/bb30d4440ea748ce958ed775b32f4019 http://www.sciencedirect.com/science/article/pii/S1053811921001002 https://doaj.org/toc/1095-9572 |
remote_bool |
true |
author2 |
Erin W. Dickie Grace Jacobs Zafiris J. Daskalakis Aristotle N. Voineskos |
author2Str |
Erin W. Dickie Grace Jacobs Zafiris J. Daskalakis Aristotle N. Voineskos |
ppnlink |
268125503 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.neuroimage.2021.117823 |
callnumber-a |
RC321-571 |
up_date |
2024-07-04T01:52:03.053Z |
_version_ |
1803611456726368256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ00261426X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309171259.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neuroimage.2021.117823</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ00261426X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbb30d4440ea748ce958ed775b32f4019</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC321-571</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Colin Hawco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Moving beyond the mean: Subgroups and dimensions of brain activity and cognitive performance across domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Human neuroimaging during cognitive tasks has provided unique and important insights into the neurobiology of cognition. However, the vast majority of research relies on group aggregate or average statistical maps of activity, which do not fully capture the rich intersubject variability in brain function. In order to fully understand the neurobiology of cognitive processes, it is necessary to explore the range of variability in activation patterns across individuals. To better characterize individual variability, hierarchical clustering was performed separately on six fMRI tasks in 822 participants from the Human Connectome Project. Across all tasks, clusters ranged from a predominantly ‘deactivating’ pattern towards a more ‘activating’ pattern of brain activity, with significant differences in out-of-scanner cognitive test scores between clusters. Cluster stability was assessed via a resampling approach; a cluster probability matrix was generated, as the probability of any pair of participants clustering together when both were present in a random subsample. Rather than forming distinct clusters, participants fell along a spectrum or into pseudo-clusters without clear boundaries. A principal components analysis of the cluster probability matrix revealed three components explaining over 90% of the variance in clustering. Plotting participants in this lower-dimensional ‘similarity space’ revealed manifolds of variations along an S ‘snake’ shaped spectrum or a folded circle or ‘tortilla’ shape. The ‘snake’ shape was present in tasks where individual variability related to activity along covarying networks, while the ‘tortilla’ shape represented multiple networks which varied independently.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences. Biological psychiatry. Neuropsychiatry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Erin W. Dickie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Grace Jacobs</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zafiris J. Daskalakis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aristotle N. Voineskos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">NeuroImage</subfield><subfield code="d">Elsevier, 2020</subfield><subfield code="g">231(2021), Seite 117823-</subfield><subfield code="w">(DE-627)268125503</subfield><subfield code="w">(DE-600)1471418-8</subfield><subfield code="x">10959572</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:231</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:117823-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neuroimage.2021.117823</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bb30d4440ea748ce958ed775b32f4019</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1053811921001002</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1095-9572</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">231</subfield><subfield code="j">2021</subfield><subfield code="h">117823-</subfield></datafield></record></collection>
|
score |
7.399987 |