Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius
Highly pathogenic avian influenza (HPAI) outbreaks are a threat to human health and cause extremely large financial losses to the poultry industry due to containment measures. Determining the most effective control measures, especially the culling radius, to minimize economic impacts yet contain the...
Ausführliche Beschreibung
Autor*in: |
Kwideok Han [verfasserIn] Meilan An [verfasserIn] Inbae Ji [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
highly pathogenic avian influenza |
---|
Übergeordnetes Werk: |
In: International Journal of Environmental Research and Public Health - MDPI AG, 2005, 18(2021), 9643, p 9643 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2021 ; number:9643, p 9643 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijerph18189643 |
---|
Katalog-ID: |
DOAJ002791145 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ002791145 | ||
003 | DE-627 | ||
005 | 20230309171956.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijerph18189643 |2 doi | |
035 | |a (DE-627)DOAJ002791145 | ||
035 | |a (DE-599)DOAJ7f42ff642eed407283e65781e8337607 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Kwideok Han |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Highly pathogenic avian influenza (HPAI) outbreaks are a threat to human health and cause extremely large financial losses to the poultry industry due to containment measures. Determining the most effective control measures, especially the culling radius, to minimize economic impacts yet contain the spread of HPAI is of great importance. This study examines the factors influencing the probability of a farm being infected with HPAI during the 2016–2017 HPAI outbreak in Korea. Using a spatial random effects logistic model, only a few factors commonly associated with a higher risk of HPAI infection were significant. Interestingly, most density-related factors, poultry and farm, were not significantly associated with a higher risk of HPAI infection. The effective culling radius was determined to be two ranges: 0.5–2.2 km and 2.7–3.0 km. This suggests that the spatial heterogeneity, due to local characteristics and/or the characteristics of the HPAI virus(es) involved, should be considered to determine the most effective culling radius in each region. These findings will help strengthen biosecurity control measures at the farm level and enable authorities to quickly respond to HPAI outbreaks with effective countermeasures to suppress the spread of HPAI. | ||
650 | 4 | |a highly pathogenic avian influenza | |
650 | 4 | |a HPAI | |
650 | 4 | |a spatial random effects logistic model | |
650 | 4 | |a spatial dependency | |
650 | 4 | |a spatial autocorrelation | |
650 | 4 | |a effective culling radius | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
700 | 0 | |a Meilan An |e verfasserin |4 aut | |
700 | 0 | |a Inbae Ji |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Environmental Research and Public Health |d MDPI AG, 2005 |g 18(2021), 9643, p 9643 |w (DE-627)477992463 |w (DE-600)2175195-X |x 16604601 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2021 |g number:9643, p 9643 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijerph18189643 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7f42ff642eed407283e65781e8337607 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1660-4601/18/18/9643 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-7827 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1660-4601 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 18 |j 2021 |e 9643, p 9643 |
author_variant |
k h kh m a ma i j ij |
---|---|
matchkey_str |
article:16604601:2021----::nlznsaileednyfh2121krahaotratdtrie |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/ijerph18189643 doi (DE-627)DOAJ002791145 (DE-599)DOAJ7f42ff642eed407283e65781e8337607 DE-627 ger DE-627 rakwb eng Kwideok Han verfasserin aut Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Highly pathogenic avian influenza (HPAI) outbreaks are a threat to human health and cause extremely large financial losses to the poultry industry due to containment measures. Determining the most effective control measures, especially the culling radius, to minimize economic impacts yet contain the spread of HPAI is of great importance. This study examines the factors influencing the probability of a farm being infected with HPAI during the 2016–2017 HPAI outbreak in Korea. Using a spatial random effects logistic model, only a few factors commonly associated with a higher risk of HPAI infection were significant. Interestingly, most density-related factors, poultry and farm, were not significantly associated with a higher risk of HPAI infection. The effective culling radius was determined to be two ranges: 0.5–2.2 km and 2.7–3.0 km. This suggests that the spatial heterogeneity, due to local characteristics and/or the characteristics of the HPAI virus(es) involved, should be considered to determine the most effective culling radius in each region. These findings will help strengthen biosecurity control measures at the farm level and enable authorities to quickly respond to HPAI outbreaks with effective countermeasures to suppress the spread of HPAI. highly pathogenic avian influenza HPAI spatial random effects logistic model spatial dependency spatial autocorrelation effective culling radius Medicine R Meilan An verfasserin aut Inbae Ji verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 18(2021), 9643, p 9643 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:18 year:2021 number:9643, p 9643 https://doi.org/10.3390/ijerph18189643 kostenfrei https://doaj.org/article/7f42ff642eed407283e65781e8337607 kostenfrei https://www.mdpi.com/1660-4601/18/18/9643 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 9643, p 9643 |
spelling |
10.3390/ijerph18189643 doi (DE-627)DOAJ002791145 (DE-599)DOAJ7f42ff642eed407283e65781e8337607 DE-627 ger DE-627 rakwb eng Kwideok Han verfasserin aut Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Highly pathogenic avian influenza (HPAI) outbreaks are a threat to human health and cause extremely large financial losses to the poultry industry due to containment measures. Determining the most effective control measures, especially the culling radius, to minimize economic impacts yet contain the spread of HPAI is of great importance. This study examines the factors influencing the probability of a farm being infected with HPAI during the 2016–2017 HPAI outbreak in Korea. Using a spatial random effects logistic model, only a few factors commonly associated with a higher risk of HPAI infection were significant. Interestingly, most density-related factors, poultry and farm, were not significantly associated with a higher risk of HPAI infection. The effective culling radius was determined to be two ranges: 0.5–2.2 km and 2.7–3.0 km. This suggests that the spatial heterogeneity, due to local characteristics and/or the characteristics of the HPAI virus(es) involved, should be considered to determine the most effective culling radius in each region. These findings will help strengthen biosecurity control measures at the farm level and enable authorities to quickly respond to HPAI outbreaks with effective countermeasures to suppress the spread of HPAI. highly pathogenic avian influenza HPAI spatial random effects logistic model spatial dependency spatial autocorrelation effective culling radius Medicine R Meilan An verfasserin aut Inbae Ji verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 18(2021), 9643, p 9643 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:18 year:2021 number:9643, p 9643 https://doi.org/10.3390/ijerph18189643 kostenfrei https://doaj.org/article/7f42ff642eed407283e65781e8337607 kostenfrei https://www.mdpi.com/1660-4601/18/18/9643 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 9643, p 9643 |
allfields_unstemmed |
10.3390/ijerph18189643 doi (DE-627)DOAJ002791145 (DE-599)DOAJ7f42ff642eed407283e65781e8337607 DE-627 ger DE-627 rakwb eng Kwideok Han verfasserin aut Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Highly pathogenic avian influenza (HPAI) outbreaks are a threat to human health and cause extremely large financial losses to the poultry industry due to containment measures. Determining the most effective control measures, especially the culling radius, to minimize economic impacts yet contain the spread of HPAI is of great importance. This study examines the factors influencing the probability of a farm being infected with HPAI during the 2016–2017 HPAI outbreak in Korea. Using a spatial random effects logistic model, only a few factors commonly associated with a higher risk of HPAI infection were significant. Interestingly, most density-related factors, poultry and farm, were not significantly associated with a higher risk of HPAI infection. The effective culling radius was determined to be two ranges: 0.5–2.2 km and 2.7–3.0 km. This suggests that the spatial heterogeneity, due to local characteristics and/or the characteristics of the HPAI virus(es) involved, should be considered to determine the most effective culling radius in each region. These findings will help strengthen biosecurity control measures at the farm level and enable authorities to quickly respond to HPAI outbreaks with effective countermeasures to suppress the spread of HPAI. highly pathogenic avian influenza HPAI spatial random effects logistic model spatial dependency spatial autocorrelation effective culling radius Medicine R Meilan An verfasserin aut Inbae Ji verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 18(2021), 9643, p 9643 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:18 year:2021 number:9643, p 9643 https://doi.org/10.3390/ijerph18189643 kostenfrei https://doaj.org/article/7f42ff642eed407283e65781e8337607 kostenfrei https://www.mdpi.com/1660-4601/18/18/9643 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 9643, p 9643 |
allfieldsGer |
10.3390/ijerph18189643 doi (DE-627)DOAJ002791145 (DE-599)DOAJ7f42ff642eed407283e65781e8337607 DE-627 ger DE-627 rakwb eng Kwideok Han verfasserin aut Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Highly pathogenic avian influenza (HPAI) outbreaks are a threat to human health and cause extremely large financial losses to the poultry industry due to containment measures. Determining the most effective control measures, especially the culling radius, to minimize economic impacts yet contain the spread of HPAI is of great importance. This study examines the factors influencing the probability of a farm being infected with HPAI during the 2016–2017 HPAI outbreak in Korea. Using a spatial random effects logistic model, only a few factors commonly associated with a higher risk of HPAI infection were significant. Interestingly, most density-related factors, poultry and farm, were not significantly associated with a higher risk of HPAI infection. The effective culling radius was determined to be two ranges: 0.5–2.2 km and 2.7–3.0 km. This suggests that the spatial heterogeneity, due to local characteristics and/or the characteristics of the HPAI virus(es) involved, should be considered to determine the most effective culling radius in each region. These findings will help strengthen biosecurity control measures at the farm level and enable authorities to quickly respond to HPAI outbreaks with effective countermeasures to suppress the spread of HPAI. highly pathogenic avian influenza HPAI spatial random effects logistic model spatial dependency spatial autocorrelation effective culling radius Medicine R Meilan An verfasserin aut Inbae Ji verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 18(2021), 9643, p 9643 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:18 year:2021 number:9643, p 9643 https://doi.org/10.3390/ijerph18189643 kostenfrei https://doaj.org/article/7f42ff642eed407283e65781e8337607 kostenfrei https://www.mdpi.com/1660-4601/18/18/9643 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 9643, p 9643 |
allfieldsSound |
10.3390/ijerph18189643 doi (DE-627)DOAJ002791145 (DE-599)DOAJ7f42ff642eed407283e65781e8337607 DE-627 ger DE-627 rakwb eng Kwideok Han verfasserin aut Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Highly pathogenic avian influenza (HPAI) outbreaks are a threat to human health and cause extremely large financial losses to the poultry industry due to containment measures. Determining the most effective control measures, especially the culling radius, to minimize economic impacts yet contain the spread of HPAI is of great importance. This study examines the factors influencing the probability of a farm being infected with HPAI during the 2016–2017 HPAI outbreak in Korea. Using a spatial random effects logistic model, only a few factors commonly associated with a higher risk of HPAI infection were significant. Interestingly, most density-related factors, poultry and farm, were not significantly associated with a higher risk of HPAI infection. The effective culling radius was determined to be two ranges: 0.5–2.2 km and 2.7–3.0 km. This suggests that the spatial heterogeneity, due to local characteristics and/or the characteristics of the HPAI virus(es) involved, should be considered to determine the most effective culling radius in each region. These findings will help strengthen biosecurity control measures at the farm level and enable authorities to quickly respond to HPAI outbreaks with effective countermeasures to suppress the spread of HPAI. highly pathogenic avian influenza HPAI spatial random effects logistic model spatial dependency spatial autocorrelation effective culling radius Medicine R Meilan An verfasserin aut Inbae Ji verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 18(2021), 9643, p 9643 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:18 year:2021 number:9643, p 9643 https://doi.org/10.3390/ijerph18189643 kostenfrei https://doaj.org/article/7f42ff642eed407283e65781e8337607 kostenfrei https://www.mdpi.com/1660-4601/18/18/9643 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 9643, p 9643 |
language |
English |
source |
In International Journal of Environmental Research and Public Health 18(2021), 9643, p 9643 volume:18 year:2021 number:9643, p 9643 |
sourceStr |
In International Journal of Environmental Research and Public Health 18(2021), 9643, p 9643 volume:18 year:2021 number:9643, p 9643 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
highly pathogenic avian influenza HPAI spatial random effects logistic model spatial dependency spatial autocorrelation effective culling radius Medicine R |
isfreeaccess_bool |
true |
container_title |
International Journal of Environmental Research and Public Health |
authorswithroles_txt_mv |
Kwideok Han @@aut@@ Meilan An @@aut@@ Inbae Ji @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
477992463 |
id |
DOAJ002791145 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ002791145</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309171956.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph18189643</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ002791145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f42ff642eed407283e65781e8337607</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kwideok Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highly pathogenic avian influenza (HPAI) outbreaks are a threat to human health and cause extremely large financial losses to the poultry industry due to containment measures. Determining the most effective control measures, especially the culling radius, to minimize economic impacts yet contain the spread of HPAI is of great importance. This study examines the factors influencing the probability of a farm being infected with HPAI during the 2016–2017 HPAI outbreak in Korea. Using a spatial random effects logistic model, only a few factors commonly associated with a higher risk of HPAI infection were significant. Interestingly, most density-related factors, poultry and farm, were not significantly associated with a higher risk of HPAI infection. The effective culling radius was determined to be two ranges: 0.5–2.2 km and 2.7–3.0 km. This suggests that the spatial heterogeneity, due to local characteristics and/or the characteristics of the HPAI virus(es) involved, should be considered to determine the most effective culling radius in each region. These findings will help strengthen biosecurity control measures at the farm level and enable authorities to quickly respond to HPAI outbreaks with effective countermeasures to suppress the spread of HPAI.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">highly pathogenic avian influenza</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HPAI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial random effects logistic model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial dependency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial autocorrelation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">effective culling radius</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meilan An</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Inbae Ji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">18(2021), 9643, p 9643</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:9643, p 9643</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph18189643</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f42ff642eed407283e65781e8337607</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/18/18/9643</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2021</subfield><subfield code="e">9643, p 9643</subfield></datafield></record></collection>
|
author |
Kwideok Han |
spellingShingle |
Kwideok Han misc highly pathogenic avian influenza misc HPAI misc spatial random effects logistic model misc spatial dependency misc spatial autocorrelation misc effective culling radius misc Medicine misc R Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius |
authorStr |
Kwideok Han |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)477992463 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
16604601 |
topic_title |
Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius highly pathogenic avian influenza HPAI spatial random effects logistic model spatial dependency spatial autocorrelation effective culling radius |
topic |
misc highly pathogenic avian influenza misc HPAI misc spatial random effects logistic model misc spatial dependency misc spatial autocorrelation misc effective culling radius misc Medicine misc R |
topic_unstemmed |
misc highly pathogenic avian influenza misc HPAI misc spatial random effects logistic model misc spatial dependency misc spatial autocorrelation misc effective culling radius misc Medicine misc R |
topic_browse |
misc highly pathogenic avian influenza misc HPAI misc spatial random effects logistic model misc spatial dependency misc spatial autocorrelation misc effective culling radius misc Medicine misc R |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Environmental Research and Public Health |
hierarchy_parent_id |
477992463 |
hierarchy_top_title |
International Journal of Environmental Research and Public Health |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)477992463 (DE-600)2175195-X |
title |
Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius |
ctrlnum |
(DE-627)DOAJ002791145 (DE-599)DOAJ7f42ff642eed407283e65781e8337607 |
title_full |
Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius |
author_sort |
Kwideok Han |
journal |
International Journal of Environmental Research and Public Health |
journalStr |
International Journal of Environmental Research and Public Health |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Kwideok Han Meilan An Inbae Ji |
container_volume |
18 |
format_se |
Elektronische Aufsätze |
author-letter |
Kwideok Han |
doi_str_mv |
10.3390/ijerph18189643 |
author2-role |
verfasserin |
title_sort |
analyzing spatial dependency of the 2016–2017 korean hpai outbreak to determine the effective culling radius |
title_auth |
Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius |
abstract |
Highly pathogenic avian influenza (HPAI) outbreaks are a threat to human health and cause extremely large financial losses to the poultry industry due to containment measures. Determining the most effective control measures, especially the culling radius, to minimize economic impacts yet contain the spread of HPAI is of great importance. This study examines the factors influencing the probability of a farm being infected with HPAI during the 2016–2017 HPAI outbreak in Korea. Using a spatial random effects logistic model, only a few factors commonly associated with a higher risk of HPAI infection were significant. Interestingly, most density-related factors, poultry and farm, were not significantly associated with a higher risk of HPAI infection. The effective culling radius was determined to be two ranges: 0.5–2.2 km and 2.7–3.0 km. This suggests that the spatial heterogeneity, due to local characteristics and/or the characteristics of the HPAI virus(es) involved, should be considered to determine the most effective culling radius in each region. These findings will help strengthen biosecurity control measures at the farm level and enable authorities to quickly respond to HPAI outbreaks with effective countermeasures to suppress the spread of HPAI. |
abstractGer |
Highly pathogenic avian influenza (HPAI) outbreaks are a threat to human health and cause extremely large financial losses to the poultry industry due to containment measures. Determining the most effective control measures, especially the culling radius, to minimize economic impacts yet contain the spread of HPAI is of great importance. This study examines the factors influencing the probability of a farm being infected with HPAI during the 2016–2017 HPAI outbreak in Korea. Using a spatial random effects logistic model, only a few factors commonly associated with a higher risk of HPAI infection were significant. Interestingly, most density-related factors, poultry and farm, were not significantly associated with a higher risk of HPAI infection. The effective culling radius was determined to be two ranges: 0.5–2.2 km and 2.7–3.0 km. This suggests that the spatial heterogeneity, due to local characteristics and/or the characteristics of the HPAI virus(es) involved, should be considered to determine the most effective culling radius in each region. These findings will help strengthen biosecurity control measures at the farm level and enable authorities to quickly respond to HPAI outbreaks with effective countermeasures to suppress the spread of HPAI. |
abstract_unstemmed |
Highly pathogenic avian influenza (HPAI) outbreaks are a threat to human health and cause extremely large financial losses to the poultry industry due to containment measures. Determining the most effective control measures, especially the culling radius, to minimize economic impacts yet contain the spread of HPAI is of great importance. This study examines the factors influencing the probability of a farm being infected with HPAI during the 2016–2017 HPAI outbreak in Korea. Using a spatial random effects logistic model, only a few factors commonly associated with a higher risk of HPAI infection were significant. Interestingly, most density-related factors, poultry and farm, were not significantly associated with a higher risk of HPAI infection. The effective culling radius was determined to be two ranges: 0.5–2.2 km and 2.7–3.0 km. This suggests that the spatial heterogeneity, due to local characteristics and/or the characteristics of the HPAI virus(es) involved, should be considered to determine the most effective culling radius in each region. These findings will help strengthen biosecurity control measures at the farm level and enable authorities to quickly respond to HPAI outbreaks with effective countermeasures to suppress the spread of HPAI. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9643, p 9643 |
title_short |
Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius |
url |
https://doi.org/10.3390/ijerph18189643 https://doaj.org/article/7f42ff642eed407283e65781e8337607 https://www.mdpi.com/1660-4601/18/18/9643 https://doaj.org/toc/1661-7827 https://doaj.org/toc/1660-4601 |
remote_bool |
true |
author2 |
Meilan An Inbae Ji |
author2Str |
Meilan An Inbae Ji |
ppnlink |
477992463 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijerph18189643 |
up_date |
2024-07-03T14:07:31.082Z |
_version_ |
1803567131352104960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ002791145</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309171956.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph18189643</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ002791145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f42ff642eed407283e65781e8337607</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kwideok Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highly pathogenic avian influenza (HPAI) outbreaks are a threat to human health and cause extremely large financial losses to the poultry industry due to containment measures. Determining the most effective control measures, especially the culling radius, to minimize economic impacts yet contain the spread of HPAI is of great importance. This study examines the factors influencing the probability of a farm being infected with HPAI during the 2016–2017 HPAI outbreak in Korea. Using a spatial random effects logistic model, only a few factors commonly associated with a higher risk of HPAI infection were significant. Interestingly, most density-related factors, poultry and farm, were not significantly associated with a higher risk of HPAI infection. The effective culling radius was determined to be two ranges: 0.5–2.2 km and 2.7–3.0 km. This suggests that the spatial heterogeneity, due to local characteristics and/or the characteristics of the HPAI virus(es) involved, should be considered to determine the most effective culling radius in each region. These findings will help strengthen biosecurity control measures at the farm level and enable authorities to quickly respond to HPAI outbreaks with effective countermeasures to suppress the spread of HPAI.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">highly pathogenic avian influenza</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HPAI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial random effects logistic model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial dependency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial autocorrelation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">effective culling radius</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meilan An</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Inbae Ji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">18(2021), 9643, p 9643</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:9643, p 9643</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph18189643</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f42ff642eed407283e65781e8337607</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/18/18/9643</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2021</subfield><subfield code="e">9643, p 9643</subfield></datafield></record></collection>
|
score |
7.401434 |