Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms
During an exceedance of the voltage unbalance limit at a busbar there is a need to determine which entity is causing the problem between Eskom, wind farms and other entities that can influence the voltage unbalance at the busbar. There were voltage unbalance limit exceedances at Eskom-K, Eskom-C and...
Ausführliche Beschreibung
Autor*in: |
N. Ntsadu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
grid code, amend, traction load, independent power producer, transnet |
---|
Übergeordnetes Werk: |
In: Journal of Energy in Southern Africa - University of Cape Town, 2018, 30(2019), 2, Seite 64-79 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2019 ; number:2 ; pages:64-79 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.17159/2413-3051/2019/v30i2a5658 |
---|
Katalog-ID: |
DOAJ002817381 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ002817381 | ||
003 | DE-627 | ||
005 | 20230309172108.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.17159/2413-3051/2019/v30i2a5658 |2 doi | |
035 | |a (DE-627)DOAJ002817381 | ||
035 | |a (DE-599)DOAJ89fbde6fc4e34688bfe50a1213c84de3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TJ163.26-163.5 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a N. Ntsadu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a During an exceedance of the voltage unbalance limit at a busbar there is a need to determine which entity is causing the problem between Eskom, wind farms and other entities that can influence the voltage unbalance at the busbar. There were voltage unbalance limit exceedances at Eskom-K, Eskom-C and Eskom-Z Eskom substations. There was a need to determine which entity was causing the voltage unbalance exceedances at these substations between Eskom, Transnet and wind farms. The normalised cross correlation was used to determine the source of voltage unbalance exceedances at Eskom-K and Eskom-C substation. The normal- ised cross correlation together with the variance was used to determine the source of voltage unbalance exceedances at Eskom-Z substation. The correlation value of Eskom-K voltage unbalance when correlated with the wind farm’s total active power was close to one. The correlation value of Eskom-C voltage unbalance when correlated with the Eskom loads was also close to one. There was a high variance of the voltage un- balance and corresponded to the high variance of the Transnet traction station loads. Based on the correlation and variance results, it was concluded that voltage unbalance at Eskom-K substation was caused by the wind farms. The voltage unbalance at Eskom-C substation was caused by the Eskom loads. The voltage unbalance at Eskom-Z was caused by the traction loads because the Eskom-Z voltage unbalance variance corresponded with the traction load variance. | ||
650 | 4 | |a grid code, amend, traction load, independent power producer, transnet | |
653 | 0 | |a Energy conservation | |
653 | 0 | |a Environmental sciences | |
773 | 0 | 8 | |i In |t Journal of Energy in Southern Africa |d University of Cape Town, 2018 |g 30(2019), 2, Seite 64-79 |w (DE-627)721350054 |w (DE-600)2677897-X |x 24133051 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2019 |g number:2 |g pages:64-79 |
856 | 4 | 0 | |u https://doi.org/10.17159/2413-3051/2019/v30i2a5658 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/89fbde6fc4e34688bfe50a1213c84de3 |z kostenfrei |
856 | 4 | 0 | |u https://journals.assaf.org.za/index.php/jesa/article/view/5658 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1021-447X |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2413-3051 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 30 |j 2019 |e 2 |h 64-79 |
author_variant |
n n nn |
---|---|
matchkey_str |
article:24133051:2019----::snnraiecosorltoadaineoeemnteorefotgublnexed |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TJ |
publishDate |
2019 |
allfields |
10.17159/2413-3051/2019/v30i2a5658 doi (DE-627)DOAJ002817381 (DE-599)DOAJ89fbde6fc4e34688bfe50a1213c84de3 DE-627 ger DE-627 rakwb eng TJ163.26-163.5 GE1-350 N. Ntsadu verfasserin aut Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier During an exceedance of the voltage unbalance limit at a busbar there is a need to determine which entity is causing the problem between Eskom, wind farms and other entities that can influence the voltage unbalance at the busbar. There were voltage unbalance limit exceedances at Eskom-K, Eskom-C and Eskom-Z Eskom substations. There was a need to determine which entity was causing the voltage unbalance exceedances at these substations between Eskom, Transnet and wind farms. The normalised cross correlation was used to determine the source of voltage unbalance exceedances at Eskom-K and Eskom-C substation. The normal- ised cross correlation together with the variance was used to determine the source of voltage unbalance exceedances at Eskom-Z substation. The correlation value of Eskom-K voltage unbalance when correlated with the wind farm’s total active power was close to one. The correlation value of Eskom-C voltage unbalance when correlated with the Eskom loads was also close to one. There was a high variance of the voltage un- balance and corresponded to the high variance of the Transnet traction station loads. Based on the correlation and variance results, it was concluded that voltage unbalance at Eskom-K substation was caused by the wind farms. The voltage unbalance at Eskom-C substation was caused by the Eskom loads. The voltage unbalance at Eskom-Z was caused by the traction loads because the Eskom-Z voltage unbalance variance corresponded with the traction load variance. grid code, amend, traction load, independent power producer, transnet Energy conservation Environmental sciences In Journal of Energy in Southern Africa University of Cape Town, 2018 30(2019), 2, Seite 64-79 (DE-627)721350054 (DE-600)2677897-X 24133051 nnns volume:30 year:2019 number:2 pages:64-79 https://doi.org/10.17159/2413-3051/2019/v30i2a5658 kostenfrei https://doaj.org/article/89fbde6fc4e34688bfe50a1213c84de3 kostenfrei https://journals.assaf.org.za/index.php/jesa/article/view/5658 kostenfrei https://doaj.org/toc/1021-447X Journal toc kostenfrei https://doaj.org/toc/2413-3051 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2019 2 64-79 |
spelling |
10.17159/2413-3051/2019/v30i2a5658 doi (DE-627)DOAJ002817381 (DE-599)DOAJ89fbde6fc4e34688bfe50a1213c84de3 DE-627 ger DE-627 rakwb eng TJ163.26-163.5 GE1-350 N. Ntsadu verfasserin aut Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier During an exceedance of the voltage unbalance limit at a busbar there is a need to determine which entity is causing the problem between Eskom, wind farms and other entities that can influence the voltage unbalance at the busbar. There were voltage unbalance limit exceedances at Eskom-K, Eskom-C and Eskom-Z Eskom substations. There was a need to determine which entity was causing the voltage unbalance exceedances at these substations between Eskom, Transnet and wind farms. The normalised cross correlation was used to determine the source of voltage unbalance exceedances at Eskom-K and Eskom-C substation. The normal- ised cross correlation together with the variance was used to determine the source of voltage unbalance exceedances at Eskom-Z substation. The correlation value of Eskom-K voltage unbalance when correlated with the wind farm’s total active power was close to one. The correlation value of Eskom-C voltage unbalance when correlated with the Eskom loads was also close to one. There was a high variance of the voltage un- balance and corresponded to the high variance of the Transnet traction station loads. Based on the correlation and variance results, it was concluded that voltage unbalance at Eskom-K substation was caused by the wind farms. The voltage unbalance at Eskom-C substation was caused by the Eskom loads. The voltage unbalance at Eskom-Z was caused by the traction loads because the Eskom-Z voltage unbalance variance corresponded with the traction load variance. grid code, amend, traction load, independent power producer, transnet Energy conservation Environmental sciences In Journal of Energy in Southern Africa University of Cape Town, 2018 30(2019), 2, Seite 64-79 (DE-627)721350054 (DE-600)2677897-X 24133051 nnns volume:30 year:2019 number:2 pages:64-79 https://doi.org/10.17159/2413-3051/2019/v30i2a5658 kostenfrei https://doaj.org/article/89fbde6fc4e34688bfe50a1213c84de3 kostenfrei https://journals.assaf.org.za/index.php/jesa/article/view/5658 kostenfrei https://doaj.org/toc/1021-447X Journal toc kostenfrei https://doaj.org/toc/2413-3051 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2019 2 64-79 |
allfields_unstemmed |
10.17159/2413-3051/2019/v30i2a5658 doi (DE-627)DOAJ002817381 (DE-599)DOAJ89fbde6fc4e34688bfe50a1213c84de3 DE-627 ger DE-627 rakwb eng TJ163.26-163.5 GE1-350 N. Ntsadu verfasserin aut Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier During an exceedance of the voltage unbalance limit at a busbar there is a need to determine which entity is causing the problem between Eskom, wind farms and other entities that can influence the voltage unbalance at the busbar. There were voltage unbalance limit exceedances at Eskom-K, Eskom-C and Eskom-Z Eskom substations. There was a need to determine which entity was causing the voltage unbalance exceedances at these substations between Eskom, Transnet and wind farms. The normalised cross correlation was used to determine the source of voltage unbalance exceedances at Eskom-K and Eskom-C substation. The normal- ised cross correlation together with the variance was used to determine the source of voltage unbalance exceedances at Eskom-Z substation. The correlation value of Eskom-K voltage unbalance when correlated with the wind farm’s total active power was close to one. The correlation value of Eskom-C voltage unbalance when correlated with the Eskom loads was also close to one. There was a high variance of the voltage un- balance and corresponded to the high variance of the Transnet traction station loads. Based on the correlation and variance results, it was concluded that voltage unbalance at Eskom-K substation was caused by the wind farms. The voltage unbalance at Eskom-C substation was caused by the Eskom loads. The voltage unbalance at Eskom-Z was caused by the traction loads because the Eskom-Z voltage unbalance variance corresponded with the traction load variance. grid code, amend, traction load, independent power producer, transnet Energy conservation Environmental sciences In Journal of Energy in Southern Africa University of Cape Town, 2018 30(2019), 2, Seite 64-79 (DE-627)721350054 (DE-600)2677897-X 24133051 nnns volume:30 year:2019 number:2 pages:64-79 https://doi.org/10.17159/2413-3051/2019/v30i2a5658 kostenfrei https://doaj.org/article/89fbde6fc4e34688bfe50a1213c84de3 kostenfrei https://journals.assaf.org.za/index.php/jesa/article/view/5658 kostenfrei https://doaj.org/toc/1021-447X Journal toc kostenfrei https://doaj.org/toc/2413-3051 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2019 2 64-79 |
allfieldsGer |
10.17159/2413-3051/2019/v30i2a5658 doi (DE-627)DOAJ002817381 (DE-599)DOAJ89fbde6fc4e34688bfe50a1213c84de3 DE-627 ger DE-627 rakwb eng TJ163.26-163.5 GE1-350 N. Ntsadu verfasserin aut Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier During an exceedance of the voltage unbalance limit at a busbar there is a need to determine which entity is causing the problem between Eskom, wind farms and other entities that can influence the voltage unbalance at the busbar. There were voltage unbalance limit exceedances at Eskom-K, Eskom-C and Eskom-Z Eskom substations. There was a need to determine which entity was causing the voltage unbalance exceedances at these substations between Eskom, Transnet and wind farms. The normalised cross correlation was used to determine the source of voltage unbalance exceedances at Eskom-K and Eskom-C substation. The normal- ised cross correlation together with the variance was used to determine the source of voltage unbalance exceedances at Eskom-Z substation. The correlation value of Eskom-K voltage unbalance when correlated with the wind farm’s total active power was close to one. The correlation value of Eskom-C voltage unbalance when correlated with the Eskom loads was also close to one. There was a high variance of the voltage un- balance and corresponded to the high variance of the Transnet traction station loads. Based on the correlation and variance results, it was concluded that voltage unbalance at Eskom-K substation was caused by the wind farms. The voltage unbalance at Eskom-C substation was caused by the Eskom loads. The voltage unbalance at Eskom-Z was caused by the traction loads because the Eskom-Z voltage unbalance variance corresponded with the traction load variance. grid code, amend, traction load, independent power producer, transnet Energy conservation Environmental sciences In Journal of Energy in Southern Africa University of Cape Town, 2018 30(2019), 2, Seite 64-79 (DE-627)721350054 (DE-600)2677897-X 24133051 nnns volume:30 year:2019 number:2 pages:64-79 https://doi.org/10.17159/2413-3051/2019/v30i2a5658 kostenfrei https://doaj.org/article/89fbde6fc4e34688bfe50a1213c84de3 kostenfrei https://journals.assaf.org.za/index.php/jesa/article/view/5658 kostenfrei https://doaj.org/toc/1021-447X Journal toc kostenfrei https://doaj.org/toc/2413-3051 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2019 2 64-79 |
allfieldsSound |
10.17159/2413-3051/2019/v30i2a5658 doi (DE-627)DOAJ002817381 (DE-599)DOAJ89fbde6fc4e34688bfe50a1213c84de3 DE-627 ger DE-627 rakwb eng TJ163.26-163.5 GE1-350 N. Ntsadu verfasserin aut Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier During an exceedance of the voltage unbalance limit at a busbar there is a need to determine which entity is causing the problem between Eskom, wind farms and other entities that can influence the voltage unbalance at the busbar. There were voltage unbalance limit exceedances at Eskom-K, Eskom-C and Eskom-Z Eskom substations. There was a need to determine which entity was causing the voltage unbalance exceedances at these substations between Eskom, Transnet and wind farms. The normalised cross correlation was used to determine the source of voltage unbalance exceedances at Eskom-K and Eskom-C substation. The normal- ised cross correlation together with the variance was used to determine the source of voltage unbalance exceedances at Eskom-Z substation. The correlation value of Eskom-K voltage unbalance when correlated with the wind farm’s total active power was close to one. The correlation value of Eskom-C voltage unbalance when correlated with the Eskom loads was also close to one. There was a high variance of the voltage un- balance and corresponded to the high variance of the Transnet traction station loads. Based on the correlation and variance results, it was concluded that voltage unbalance at Eskom-K substation was caused by the wind farms. The voltage unbalance at Eskom-C substation was caused by the Eskom loads. The voltage unbalance at Eskom-Z was caused by the traction loads because the Eskom-Z voltage unbalance variance corresponded with the traction load variance. grid code, amend, traction load, independent power producer, transnet Energy conservation Environmental sciences In Journal of Energy in Southern Africa University of Cape Town, 2018 30(2019), 2, Seite 64-79 (DE-627)721350054 (DE-600)2677897-X 24133051 nnns volume:30 year:2019 number:2 pages:64-79 https://doi.org/10.17159/2413-3051/2019/v30i2a5658 kostenfrei https://doaj.org/article/89fbde6fc4e34688bfe50a1213c84de3 kostenfrei https://journals.assaf.org.za/index.php/jesa/article/view/5658 kostenfrei https://doaj.org/toc/1021-447X Journal toc kostenfrei https://doaj.org/toc/2413-3051 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2019 2 64-79 |
language |
English |
source |
In Journal of Energy in Southern Africa 30(2019), 2, Seite 64-79 volume:30 year:2019 number:2 pages:64-79 |
sourceStr |
In Journal of Energy in Southern Africa 30(2019), 2, Seite 64-79 volume:30 year:2019 number:2 pages:64-79 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
grid code, amend, traction load, independent power producer, transnet Energy conservation Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Journal of Energy in Southern Africa |
authorswithroles_txt_mv |
N. Ntsadu @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
721350054 |
id |
DOAJ002817381 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ002817381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309172108.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.17159/2413-3051/2019/v30i2a5658</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ002817381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ89fbde6fc4e34688bfe50a1213c84de3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ163.26-163.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">N. Ntsadu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">During an exceedance of the voltage unbalance limit at a busbar there is a need to determine which entity is causing the problem between Eskom, wind farms and other entities that can influence the voltage unbalance at the busbar. There were voltage unbalance limit exceedances at Eskom-K, Eskom-C and Eskom-Z Eskom substations. There was a need to determine which entity was causing the voltage unbalance exceedances at these substations between Eskom, Transnet and wind farms. The normalised cross correlation was used to determine the source of voltage unbalance exceedances at Eskom-K and Eskom-C substation. The normal- ised cross correlation together with the variance was used to determine the source of voltage unbalance exceedances at Eskom-Z substation. The correlation value of Eskom-K voltage unbalance when correlated with the wind farm’s total active power was close to one. The correlation value of Eskom-C voltage unbalance when correlated with the Eskom loads was also close to one. There was a high variance of the voltage un- balance and corresponded to the high variance of the Transnet traction station loads. Based on the correlation and variance results, it was concluded that voltage unbalance at Eskom-K substation was caused by the wind farms. The voltage unbalance at Eskom-C substation was caused by the Eskom loads. The voltage unbalance at Eskom-Z was caused by the traction loads because the Eskom-Z voltage unbalance variance corresponded with the traction load variance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">grid code, amend, traction load, independent power producer, transnet</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Energy conservation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Energy in Southern Africa</subfield><subfield code="d">University of Cape Town, 2018</subfield><subfield code="g">30(2019), 2, Seite 64-79</subfield><subfield code="w">(DE-627)721350054</subfield><subfield code="w">(DE-600)2677897-X</subfield><subfield code="x">24133051</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:64-79</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.17159/2413-3051/2019/v30i2a5658</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/89fbde6fc4e34688bfe50a1213c84de3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.assaf.org.za/index.php/jesa/article/view/5658</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1021-447X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2413-3051</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="h">64-79</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
N. Ntsadu |
spellingShingle |
N. Ntsadu misc TJ163.26-163.5 misc GE1-350 misc grid code, amend, traction load, independent power producer, transnet misc Energy conservation misc Environmental sciences Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms |
authorStr |
N. Ntsadu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)721350054 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ163 |
illustrated |
Not Illustrated |
issn |
24133051 |
topic_title |
TJ163.26-163.5 GE1-350 Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms grid code, amend, traction load, independent power producer, transnet |
topic |
misc TJ163.26-163.5 misc GE1-350 misc grid code, amend, traction load, independent power producer, transnet misc Energy conservation misc Environmental sciences |
topic_unstemmed |
misc TJ163.26-163.5 misc GE1-350 misc grid code, amend, traction load, independent power producer, transnet misc Energy conservation misc Environmental sciences |
topic_browse |
misc TJ163.26-163.5 misc GE1-350 misc grid code, amend, traction load, independent power producer, transnet misc Energy conservation misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Energy in Southern Africa |
hierarchy_parent_id |
721350054 |
hierarchy_top_title |
Journal of Energy in Southern Africa |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)721350054 (DE-600)2677897-X |
title |
Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms |
ctrlnum |
(DE-627)DOAJ002817381 (DE-599)DOAJ89fbde6fc4e34688bfe50a1213c84de3 |
title_full |
Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms |
author_sort |
N. Ntsadu |
journal |
Journal of Energy in Southern Africa |
journalStr |
Journal of Energy in Southern Africa |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
64 |
author_browse |
N. Ntsadu |
container_volume |
30 |
class |
TJ163.26-163.5 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
N. Ntsadu |
doi_str_mv |
10.17159/2413-3051/2019/v30i2a5658 |
title_sort |
using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in eskom networks with wind farms |
callnumber |
TJ163.26-163.5 |
title_auth |
Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms |
abstract |
During an exceedance of the voltage unbalance limit at a busbar there is a need to determine which entity is causing the problem between Eskom, wind farms and other entities that can influence the voltage unbalance at the busbar. There were voltage unbalance limit exceedances at Eskom-K, Eskom-C and Eskom-Z Eskom substations. There was a need to determine which entity was causing the voltage unbalance exceedances at these substations between Eskom, Transnet and wind farms. The normalised cross correlation was used to determine the source of voltage unbalance exceedances at Eskom-K and Eskom-C substation. The normal- ised cross correlation together with the variance was used to determine the source of voltage unbalance exceedances at Eskom-Z substation. The correlation value of Eskom-K voltage unbalance when correlated with the wind farm’s total active power was close to one. The correlation value of Eskom-C voltage unbalance when correlated with the Eskom loads was also close to one. There was a high variance of the voltage un- balance and corresponded to the high variance of the Transnet traction station loads. Based on the correlation and variance results, it was concluded that voltage unbalance at Eskom-K substation was caused by the wind farms. The voltage unbalance at Eskom-C substation was caused by the Eskom loads. The voltage unbalance at Eskom-Z was caused by the traction loads because the Eskom-Z voltage unbalance variance corresponded with the traction load variance. |
abstractGer |
During an exceedance of the voltage unbalance limit at a busbar there is a need to determine which entity is causing the problem between Eskom, wind farms and other entities that can influence the voltage unbalance at the busbar. There were voltage unbalance limit exceedances at Eskom-K, Eskom-C and Eskom-Z Eskom substations. There was a need to determine which entity was causing the voltage unbalance exceedances at these substations between Eskom, Transnet and wind farms. The normalised cross correlation was used to determine the source of voltage unbalance exceedances at Eskom-K and Eskom-C substation. The normal- ised cross correlation together with the variance was used to determine the source of voltage unbalance exceedances at Eskom-Z substation. The correlation value of Eskom-K voltage unbalance when correlated with the wind farm’s total active power was close to one. The correlation value of Eskom-C voltage unbalance when correlated with the Eskom loads was also close to one. There was a high variance of the voltage un- balance and corresponded to the high variance of the Transnet traction station loads. Based on the correlation and variance results, it was concluded that voltage unbalance at Eskom-K substation was caused by the wind farms. The voltage unbalance at Eskom-C substation was caused by the Eskom loads. The voltage unbalance at Eskom-Z was caused by the traction loads because the Eskom-Z voltage unbalance variance corresponded with the traction load variance. |
abstract_unstemmed |
During an exceedance of the voltage unbalance limit at a busbar there is a need to determine which entity is causing the problem between Eskom, wind farms and other entities that can influence the voltage unbalance at the busbar. There were voltage unbalance limit exceedances at Eskom-K, Eskom-C and Eskom-Z Eskom substations. There was a need to determine which entity was causing the voltage unbalance exceedances at these substations between Eskom, Transnet and wind farms. The normalised cross correlation was used to determine the source of voltage unbalance exceedances at Eskom-K and Eskom-C substation. The normal- ised cross correlation together with the variance was used to determine the source of voltage unbalance exceedances at Eskom-Z substation. The correlation value of Eskom-K voltage unbalance when correlated with the wind farm’s total active power was close to one. The correlation value of Eskom-C voltage unbalance when correlated with the Eskom loads was also close to one. There was a high variance of the voltage un- balance and corresponded to the high variance of the Transnet traction station loads. Based on the correlation and variance results, it was concluded that voltage unbalance at Eskom-K substation was caused by the wind farms. The voltage unbalance at Eskom-C substation was caused by the Eskom loads. The voltage unbalance at Eskom-Z was caused by the traction loads because the Eskom-Z voltage unbalance variance corresponded with the traction load variance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms |
url |
https://doi.org/10.17159/2413-3051/2019/v30i2a5658 https://doaj.org/article/89fbde6fc4e34688bfe50a1213c84de3 https://journals.assaf.org.za/index.php/jesa/article/view/5658 https://doaj.org/toc/1021-447X https://doaj.org/toc/2413-3051 |
remote_bool |
true |
ppnlink |
721350054 |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.17159/2413-3051/2019/v30i2a5658 |
callnumber-a |
TJ163.26-163.5 |
up_date |
2024-07-03T14:17:00.974Z |
_version_ |
1803567728928227328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ002817381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309172108.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.17159/2413-3051/2019/v30i2a5658</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ002817381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ89fbde6fc4e34688bfe50a1213c84de3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ163.26-163.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">N. Ntsadu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Using normalised cross correlation and variance to determine the source of voltage unbalance exceedances in Eskom networks with wind farms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">During an exceedance of the voltage unbalance limit at a busbar there is a need to determine which entity is causing the problem between Eskom, wind farms and other entities that can influence the voltage unbalance at the busbar. There were voltage unbalance limit exceedances at Eskom-K, Eskom-C and Eskom-Z Eskom substations. There was a need to determine which entity was causing the voltage unbalance exceedances at these substations between Eskom, Transnet and wind farms. The normalised cross correlation was used to determine the source of voltage unbalance exceedances at Eskom-K and Eskom-C substation. The normal- ised cross correlation together with the variance was used to determine the source of voltage unbalance exceedances at Eskom-Z substation. The correlation value of Eskom-K voltage unbalance when correlated with the wind farm’s total active power was close to one. The correlation value of Eskom-C voltage unbalance when correlated with the Eskom loads was also close to one. There was a high variance of the voltage un- balance and corresponded to the high variance of the Transnet traction station loads. Based on the correlation and variance results, it was concluded that voltage unbalance at Eskom-K substation was caused by the wind farms. The voltage unbalance at Eskom-C substation was caused by the Eskom loads. The voltage unbalance at Eskom-Z was caused by the traction loads because the Eskom-Z voltage unbalance variance corresponded with the traction load variance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">grid code, amend, traction load, independent power producer, transnet</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Energy conservation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Energy in Southern Africa</subfield><subfield code="d">University of Cape Town, 2018</subfield><subfield code="g">30(2019), 2, Seite 64-79</subfield><subfield code="w">(DE-627)721350054</subfield><subfield code="w">(DE-600)2677897-X</subfield><subfield code="x">24133051</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:64-79</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.17159/2413-3051/2019/v30i2a5658</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/89fbde6fc4e34688bfe50a1213c84de3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.assaf.org.za/index.php/jesa/article/view/5658</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1021-447X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2413-3051</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="h">64-79</subfield></datafield></record></collection>
|
score |
7.40077 |