Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa
Natural kamacite samples (Fe<sub<92.5</sub<Ni<sub<7.5</sub<) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ t...
Ausführliche Beschreibung
Autor*in: |
Sabrina Tecklenburg [verfasserIn] Roberto Colina-Ruiz [verfasserIn] Sovanndara Hok [verfasserIn] Cynthia Bolme [verfasserIn] Eric Galtier [verfasserIn] Eduardo Granados [verfasserIn] Akel Hashim [verfasserIn] Hae Ja Lee [verfasserIn] Sébastien Merkel [verfasserIn] Benjamin Morrow [verfasserIn] Bob Nagler [verfasserIn] Kyle Ramos [verfasserIn] Dylan Rittman [verfasserIn] Richard Walroth [verfasserIn] Wendy L. Mao [verfasserIn] Arianna E. Gleason [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Minerals - MDPI AG, 2012, 11(2021), 6, p 567 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:6, p 567 |
Links: |
---|
DOI / URN: |
10.3390/min11060567 |
---|
Katalog-ID: |
DOAJ002862417 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ002862417 | ||
003 | DE-627 | ||
005 | 20240412180134.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/min11060567 |2 doi | |
035 | |a (DE-627)DOAJ002862417 | ||
035 | |a (DE-599)DOAJa341b58d65054037afca28fbfe4bcbc5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QE351-399.2 | |
100 | 0 | |a Sabrina Tecklenburg |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Natural kamacite samples (Fe<sub<92.5</sub<Ni<sub<7.5</sub<) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the <i<c/a</i< ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal <i<c/a</i< ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity. | ||
650 | 4 | |a ultrafast X-ray diffraction | |
650 | 4 | |a laser shock compression | |
650 | 4 | |a iron meteorite | |
653 | 0 | |a Mineralogy | |
700 | 0 | |a Roberto Colina-Ruiz |e verfasserin |4 aut | |
700 | 0 | |a Sovanndara Hok |e verfasserin |4 aut | |
700 | 0 | |a Cynthia Bolme |e verfasserin |4 aut | |
700 | 0 | |a Eric Galtier |e verfasserin |4 aut | |
700 | 0 | |a Eduardo Granados |e verfasserin |4 aut | |
700 | 0 | |a Akel Hashim |e verfasserin |4 aut | |
700 | 0 | |a Hae Ja Lee |e verfasserin |4 aut | |
700 | 0 | |a Sébastien Merkel |e verfasserin |4 aut | |
700 | 0 | |a Benjamin Morrow |e verfasserin |4 aut | |
700 | 0 | |a Bob Nagler |e verfasserin |4 aut | |
700 | 0 | |a Kyle Ramos |e verfasserin |4 aut | |
700 | 0 | |a Dylan Rittman |e verfasserin |4 aut | |
700 | 0 | |a Richard Walroth |e verfasserin |4 aut | |
700 | 0 | |a Wendy L. Mao |e verfasserin |4 aut | |
700 | 0 | |a Arianna E. Gleason |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Minerals |d MDPI AG, 2012 |g 11(2021), 6, p 567 |w (DE-627)689132069 |w (DE-600)2655947-X |x 2075163X |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:6, p 567 |
856 | 4 | 0 | |u https://doi.org/10.3390/min11060567 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a341b58d65054037afca28fbfe4bcbc5 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-163X/11/6/567 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-163X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 6, p 567 |
author_variant |
s t st r c r rcr s h sh c b cb e g eg e g eg a h ah h j l hjl s m sm b m bm b n bn k r kr d r dr r w rw w l m wlm a e g aeg |
---|---|
matchkey_str |
article:2075163X:2021----::lrfsxadfrcintdoahccmrseio |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QE |
publishDate |
2021 |
allfields |
10.3390/min11060567 doi (DE-627)DOAJ002862417 (DE-599)DOAJa341b58d65054037afca28fbfe4bcbc5 DE-627 ger DE-627 rakwb eng QE351-399.2 Sabrina Tecklenburg verfasserin aut Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Natural kamacite samples (Fe<sub<92.5</sub<Ni<sub<7.5</sub<) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the <i<c/a</i< ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal <i<c/a</i< ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity. ultrafast X-ray diffraction laser shock compression iron meteorite Mineralogy Roberto Colina-Ruiz verfasserin aut Sovanndara Hok verfasserin aut Cynthia Bolme verfasserin aut Eric Galtier verfasserin aut Eduardo Granados verfasserin aut Akel Hashim verfasserin aut Hae Ja Lee verfasserin aut Sébastien Merkel verfasserin aut Benjamin Morrow verfasserin aut Bob Nagler verfasserin aut Kyle Ramos verfasserin aut Dylan Rittman verfasserin aut Richard Walroth verfasserin aut Wendy L. Mao verfasserin aut Arianna E. Gleason verfasserin aut In Minerals MDPI AG, 2012 11(2021), 6, p 567 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:11 year:2021 number:6, p 567 https://doi.org/10.3390/min11060567 kostenfrei https://doaj.org/article/a341b58d65054037afca28fbfe4bcbc5 kostenfrei https://www.mdpi.com/2075-163X/11/6/567 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 567 |
spelling |
10.3390/min11060567 doi (DE-627)DOAJ002862417 (DE-599)DOAJa341b58d65054037afca28fbfe4bcbc5 DE-627 ger DE-627 rakwb eng QE351-399.2 Sabrina Tecklenburg verfasserin aut Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Natural kamacite samples (Fe<sub<92.5</sub<Ni<sub<7.5</sub<) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the <i<c/a</i< ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal <i<c/a</i< ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity. ultrafast X-ray diffraction laser shock compression iron meteorite Mineralogy Roberto Colina-Ruiz verfasserin aut Sovanndara Hok verfasserin aut Cynthia Bolme verfasserin aut Eric Galtier verfasserin aut Eduardo Granados verfasserin aut Akel Hashim verfasserin aut Hae Ja Lee verfasserin aut Sébastien Merkel verfasserin aut Benjamin Morrow verfasserin aut Bob Nagler verfasserin aut Kyle Ramos verfasserin aut Dylan Rittman verfasserin aut Richard Walroth verfasserin aut Wendy L. Mao verfasserin aut Arianna E. Gleason verfasserin aut In Minerals MDPI AG, 2012 11(2021), 6, p 567 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:11 year:2021 number:6, p 567 https://doi.org/10.3390/min11060567 kostenfrei https://doaj.org/article/a341b58d65054037afca28fbfe4bcbc5 kostenfrei https://www.mdpi.com/2075-163X/11/6/567 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 567 |
allfields_unstemmed |
10.3390/min11060567 doi (DE-627)DOAJ002862417 (DE-599)DOAJa341b58d65054037afca28fbfe4bcbc5 DE-627 ger DE-627 rakwb eng QE351-399.2 Sabrina Tecklenburg verfasserin aut Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Natural kamacite samples (Fe<sub<92.5</sub<Ni<sub<7.5</sub<) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the <i<c/a</i< ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal <i<c/a</i< ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity. ultrafast X-ray diffraction laser shock compression iron meteorite Mineralogy Roberto Colina-Ruiz verfasserin aut Sovanndara Hok verfasserin aut Cynthia Bolme verfasserin aut Eric Galtier verfasserin aut Eduardo Granados verfasserin aut Akel Hashim verfasserin aut Hae Ja Lee verfasserin aut Sébastien Merkel verfasserin aut Benjamin Morrow verfasserin aut Bob Nagler verfasserin aut Kyle Ramos verfasserin aut Dylan Rittman verfasserin aut Richard Walroth verfasserin aut Wendy L. Mao verfasserin aut Arianna E. Gleason verfasserin aut In Minerals MDPI AG, 2012 11(2021), 6, p 567 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:11 year:2021 number:6, p 567 https://doi.org/10.3390/min11060567 kostenfrei https://doaj.org/article/a341b58d65054037afca28fbfe4bcbc5 kostenfrei https://www.mdpi.com/2075-163X/11/6/567 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 567 |
allfieldsGer |
10.3390/min11060567 doi (DE-627)DOAJ002862417 (DE-599)DOAJa341b58d65054037afca28fbfe4bcbc5 DE-627 ger DE-627 rakwb eng QE351-399.2 Sabrina Tecklenburg verfasserin aut Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Natural kamacite samples (Fe<sub<92.5</sub<Ni<sub<7.5</sub<) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the <i<c/a</i< ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal <i<c/a</i< ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity. ultrafast X-ray diffraction laser shock compression iron meteorite Mineralogy Roberto Colina-Ruiz verfasserin aut Sovanndara Hok verfasserin aut Cynthia Bolme verfasserin aut Eric Galtier verfasserin aut Eduardo Granados verfasserin aut Akel Hashim verfasserin aut Hae Ja Lee verfasserin aut Sébastien Merkel verfasserin aut Benjamin Morrow verfasserin aut Bob Nagler verfasserin aut Kyle Ramos verfasserin aut Dylan Rittman verfasserin aut Richard Walroth verfasserin aut Wendy L. Mao verfasserin aut Arianna E. Gleason verfasserin aut In Minerals MDPI AG, 2012 11(2021), 6, p 567 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:11 year:2021 number:6, p 567 https://doi.org/10.3390/min11060567 kostenfrei https://doaj.org/article/a341b58d65054037afca28fbfe4bcbc5 kostenfrei https://www.mdpi.com/2075-163X/11/6/567 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 567 |
allfieldsSound |
10.3390/min11060567 doi (DE-627)DOAJ002862417 (DE-599)DOAJa341b58d65054037afca28fbfe4bcbc5 DE-627 ger DE-627 rakwb eng QE351-399.2 Sabrina Tecklenburg verfasserin aut Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Natural kamacite samples (Fe<sub<92.5</sub<Ni<sub<7.5</sub<) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the <i<c/a</i< ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal <i<c/a</i< ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity. ultrafast X-ray diffraction laser shock compression iron meteorite Mineralogy Roberto Colina-Ruiz verfasserin aut Sovanndara Hok verfasserin aut Cynthia Bolme verfasserin aut Eric Galtier verfasserin aut Eduardo Granados verfasserin aut Akel Hashim verfasserin aut Hae Ja Lee verfasserin aut Sébastien Merkel verfasserin aut Benjamin Morrow verfasserin aut Bob Nagler verfasserin aut Kyle Ramos verfasserin aut Dylan Rittman verfasserin aut Richard Walroth verfasserin aut Wendy L. Mao verfasserin aut Arianna E. Gleason verfasserin aut In Minerals MDPI AG, 2012 11(2021), 6, p 567 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:11 year:2021 number:6, p 567 https://doi.org/10.3390/min11060567 kostenfrei https://doaj.org/article/a341b58d65054037afca28fbfe4bcbc5 kostenfrei https://www.mdpi.com/2075-163X/11/6/567 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 567 |
language |
English |
source |
In Minerals 11(2021), 6, p 567 volume:11 year:2021 number:6, p 567 |
sourceStr |
In Minerals 11(2021), 6, p 567 volume:11 year:2021 number:6, p 567 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ultrafast X-ray diffraction laser shock compression iron meteorite Mineralogy |
isfreeaccess_bool |
true |
container_title |
Minerals |
authorswithroles_txt_mv |
Sabrina Tecklenburg @@aut@@ Roberto Colina-Ruiz @@aut@@ Sovanndara Hok @@aut@@ Cynthia Bolme @@aut@@ Eric Galtier @@aut@@ Eduardo Granados @@aut@@ Akel Hashim @@aut@@ Hae Ja Lee @@aut@@ Sébastien Merkel @@aut@@ Benjamin Morrow @@aut@@ Bob Nagler @@aut@@ Kyle Ramos @@aut@@ Dylan Rittman @@aut@@ Richard Walroth @@aut@@ Wendy L. Mao @@aut@@ Arianna E. Gleason @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
689132069 |
id |
DOAJ002862417 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ002862417</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412180134.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/min11060567</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ002862417</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa341b58d65054037afca28fbfe4bcbc5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE351-399.2</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sabrina Tecklenburg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Natural kamacite samples (Fe<sub<92.5</sub<Ni<sub<7.5</sub<) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the <i<c/a</i< ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal <i<c/a</i< ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrafast X-ray diffraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">laser shock compression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iron meteorite</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mineralogy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Colina-Ruiz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sovanndara Hok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cynthia Bolme</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eric Galtier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eduardo Granados</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Akel Hashim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hae Ja Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sébastien Merkel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benjamin Morrow</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bob Nagler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kyle Ramos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dylan Rittman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Richard Walroth</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wendy L. Mao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arianna E. Gleason</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Minerals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 6, p 567</subfield><subfield code="w">(DE-627)689132069</subfield><subfield code="w">(DE-600)2655947-X</subfield><subfield code="x">2075163X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6, p 567</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/min11060567</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a341b58d65054037afca28fbfe4bcbc5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-163X/11/6/567</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-163X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">6, p 567</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Sabrina Tecklenburg |
spellingShingle |
Sabrina Tecklenburg misc QE351-399.2 misc ultrafast X-ray diffraction misc laser shock compression misc iron meteorite misc Mineralogy Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa |
authorStr |
Sabrina Tecklenburg |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)689132069 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QE351-399 |
illustrated |
Not Illustrated |
issn |
2075163X |
topic_title |
QE351-399.2 Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa ultrafast X-ray diffraction laser shock compression iron meteorite |
topic |
misc QE351-399.2 misc ultrafast X-ray diffraction misc laser shock compression misc iron meteorite misc Mineralogy |
topic_unstemmed |
misc QE351-399.2 misc ultrafast X-ray diffraction misc laser shock compression misc iron meteorite misc Mineralogy |
topic_browse |
misc QE351-399.2 misc ultrafast X-ray diffraction misc laser shock compression misc iron meteorite misc Mineralogy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Minerals |
hierarchy_parent_id |
689132069 |
hierarchy_top_title |
Minerals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)689132069 (DE-600)2655947-X |
title |
Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa |
ctrlnum |
(DE-627)DOAJ002862417 (DE-599)DOAJa341b58d65054037afca28fbfe4bcbc5 |
title_full |
Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa |
author_sort |
Sabrina Tecklenburg |
journal |
Minerals |
journalStr |
Minerals |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Sabrina Tecklenburg Roberto Colina-Ruiz Sovanndara Hok Cynthia Bolme Eric Galtier Eduardo Granados Akel Hashim Hae Ja Lee Sébastien Merkel Benjamin Morrow Bob Nagler Kyle Ramos Dylan Rittman Richard Walroth Wendy L. Mao Arianna E. Gleason |
container_volume |
11 |
class |
QE351-399.2 |
format_se |
Elektronische Aufsätze |
author-letter |
Sabrina Tecklenburg |
doi_str_mv |
10.3390/min11060567 |
author2-role |
verfasserin |
title_sort |
ultrafast x-ray diffraction study of a shock-compressed iron meteorite above 100 gpa |
callnumber |
QE351-399.2 |
title_auth |
Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa |
abstract |
Natural kamacite samples (Fe<sub<92.5</sub<Ni<sub<7.5</sub<) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the <i<c/a</i< ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal <i<c/a</i< ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity. |
abstractGer |
Natural kamacite samples (Fe<sub<92.5</sub<Ni<sub<7.5</sub<) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the <i<c/a</i< ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal <i<c/a</i< ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity. |
abstract_unstemmed |
Natural kamacite samples (Fe<sub<92.5</sub<Ni<sub<7.5</sub<) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the <i<c/a</i< ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal <i<c/a</i< ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 567 |
title_short |
Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa |
url |
https://doi.org/10.3390/min11060567 https://doaj.org/article/a341b58d65054037afca28fbfe4bcbc5 https://www.mdpi.com/2075-163X/11/6/567 https://doaj.org/toc/2075-163X |
remote_bool |
true |
author2 |
Roberto Colina-Ruiz Sovanndara Hok Cynthia Bolme Eric Galtier Eduardo Granados Akel Hashim Hae Ja Lee Sébastien Merkel Benjamin Morrow Bob Nagler Kyle Ramos Dylan Rittman Richard Walroth Wendy L. Mao Arianna E. Gleason |
author2Str |
Roberto Colina-Ruiz Sovanndara Hok Cynthia Bolme Eric Galtier Eduardo Granados Akel Hashim Hae Ja Lee Sébastien Merkel Benjamin Morrow Bob Nagler Kyle Ramos Dylan Rittman Richard Walroth Wendy L. Mao Arianna E. Gleason |
ppnlink |
689132069 |
callnumber-subject |
QE - Geology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/min11060567 |
callnumber-a |
QE351-399.2 |
up_date |
2024-07-03T14:32:32.583Z |
_version_ |
1803568705807843328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ002862417</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412180134.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/min11060567</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ002862417</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa341b58d65054037afca28fbfe4bcbc5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE351-399.2</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sabrina Tecklenburg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ultrafast X-ray Diffraction Study of a Shock-Compressed Iron Meteorite above 100 GPa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Natural kamacite samples (Fe<sub<92.5</sub<Ni<sub<7.5</sub<) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the <i<c/a</i< ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal <i<c/a</i< ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrafast X-ray diffraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">laser shock compression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iron meteorite</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mineralogy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Colina-Ruiz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sovanndara Hok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cynthia Bolme</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eric Galtier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eduardo Granados</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Akel Hashim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hae Ja Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sébastien Merkel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benjamin Morrow</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bob Nagler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kyle Ramos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dylan Rittman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Richard Walroth</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wendy L. Mao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arianna E. Gleason</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Minerals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 6, p 567</subfield><subfield code="w">(DE-627)689132069</subfield><subfield code="w">(DE-600)2655947-X</subfield><subfield code="x">2075163X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6, p 567</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/min11060567</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a341b58d65054037afca28fbfe4bcbc5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-163X/11/6/567</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-163X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">6, p 567</subfield></datafield></record></collection>
|
score |
7.402525 |