Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications
The development of special wearable/portable electronic devices for health monitoring is rapidly growing to cope with different health parameters. The emergence of wearable devices and its growing demand has widened the scope of self-powered wearable devices with the possibility to eliminate batteri...
Ausführliche Beschreibung
Autor*in: |
Atif Sardar Khan [verfasserIn] Farid Ullah Khan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: Journal of Sensors - Hindawi Limited, 2008, (2021) |
---|---|
Übergeordnetes Werk: |
year:2021 |
Links: |
---|
DOI / URN: |
10.1155/2021/9976089 |
---|
Katalog-ID: |
DOAJ002945568 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ002945568 | ||
003 | DE-627 | ||
005 | 20230502211435.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2021/9976089 |2 doi | |
035 | |a (DE-627)DOAJ002945568 | ||
035 | |a (DE-599)DOAJ64a8b27260d74ec6a5a64098448804a3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a T1-995 | |
100 | 0 | |a Atif Sardar Khan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The development of special wearable/portable electronic devices for health monitoring is rapidly growing to cope with different health parameters. The emergence of wearable devices and its growing demand has widened the scope of self-powered wearable devices with the possibility to eliminate batteries. For instance, the wearable thermoelectric energy harvester (TEEH) is an alternate to batteries, which has been used in this study to develop four different self-powered wearable jacket prototypes and experimentally validated. It is observed that the thermal resistance of the cold side without a heat sink of prototype 4 is much greater than the rest of the proposed prototypes. Besides that, the thermal resistance of prototype 4 heat sinks is even lower among all proposed prototypes. Therefore, prototype 4 would have a relatively higher heat transfer coefficient which results in improved power generation. Moreover, an increase in heat transfer coefficient is observed with an increase in the temperature difference of the cold and hot sides of a TEEH. Thus, on the cold side, a heat flow increases which benefits heat dissipation and in turn reduces the thermal resistance of the heat sink. Besides that, the developed prototypes on people show that power generation is also affected by factors like ambient temperature, person’s activity, and wind breeze and does not depend on the metabolism. A different mechanism has been explored to maximize the power output within a 16.0 cm2 area, in order to justify the wearability of the energy harvester. Furthermore, it is observed that during the sunlight, any material covering the TEEH would improve the performance of prototypes. Prototypes are integrated into jacket and studied extensively. The TEEH system was designed to produce a maximum delivering power and power density of 699.71 μW and 43.73 μW/cm2, respectively. Moreover, the maximum voltage produced is 62.6 mV at an optimal load of 5.6 Ω. Furthermore, the TEEH (prototype 4) is connected to a power management circuit of ECT310 and LTC3108 and has been able to power 18 LEDs. | ||
653 | 0 | |a Technology (General) | |
700 | 0 | |a Farid Ullah Khan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Sensors |d Hindawi Limited, 2008 |g (2021) |w (DE-627)550736751 |w (DE-600)2397931-8 |x 1687725X |7 nnns |
773 | 1 | 8 | |g year:2021 |
856 | 4 | 0 | |u https://doi.org/10.1155/2021/9976089 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/64a8b27260d74ec6a5a64098448804a3 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2021/9976089 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1687-7268 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2021 |
author_variant |
a s k ask f u k fuk |
---|---|
matchkey_str |
article:1687725X:2021----::xeiettooaerbeefoeejcehretnbdhafre |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
T |
publishDate |
2021 |
allfields |
10.1155/2021/9976089 doi (DE-627)DOAJ002945568 (DE-599)DOAJ64a8b27260d74ec6a5a64098448804a3 DE-627 ger DE-627 rakwb eng T1-995 Atif Sardar Khan verfasserin aut Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of special wearable/portable electronic devices for health monitoring is rapidly growing to cope with different health parameters. The emergence of wearable devices and its growing demand has widened the scope of self-powered wearable devices with the possibility to eliminate batteries. For instance, the wearable thermoelectric energy harvester (TEEH) is an alternate to batteries, which has been used in this study to develop four different self-powered wearable jacket prototypes and experimentally validated. It is observed that the thermal resistance of the cold side without a heat sink of prototype 4 is much greater than the rest of the proposed prototypes. Besides that, the thermal resistance of prototype 4 heat sinks is even lower among all proposed prototypes. Therefore, prototype 4 would have a relatively higher heat transfer coefficient which results in improved power generation. Moreover, an increase in heat transfer coefficient is observed with an increase in the temperature difference of the cold and hot sides of a TEEH. Thus, on the cold side, a heat flow increases which benefits heat dissipation and in turn reduces the thermal resistance of the heat sink. Besides that, the developed prototypes on people show that power generation is also affected by factors like ambient temperature, person’s activity, and wind breeze and does not depend on the metabolism. A different mechanism has been explored to maximize the power output within a 16.0 cm2 area, in order to justify the wearability of the energy harvester. Furthermore, it is observed that during the sunlight, any material covering the TEEH would improve the performance of prototypes. Prototypes are integrated into jacket and studied extensively. The TEEH system was designed to produce a maximum delivering power and power density of 699.71 μW and 43.73 μW/cm2, respectively. Moreover, the maximum voltage produced is 62.6 mV at an optimal load of 5.6 Ω. Furthermore, the TEEH (prototype 4) is connected to a power management circuit of ECT310 and LTC3108 and has been able to power 18 LEDs. Technology (General) Farid Ullah Khan verfasserin aut In Journal of Sensors Hindawi Limited, 2008 (2021) (DE-627)550736751 (DE-600)2397931-8 1687725X nnns year:2021 https://doi.org/10.1155/2021/9976089 kostenfrei https://doaj.org/article/64a8b27260d74ec6a5a64098448804a3 kostenfrei http://dx.doi.org/10.1155/2021/9976089 kostenfrei https://doaj.org/toc/1687-7268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
spelling |
10.1155/2021/9976089 doi (DE-627)DOAJ002945568 (DE-599)DOAJ64a8b27260d74ec6a5a64098448804a3 DE-627 ger DE-627 rakwb eng T1-995 Atif Sardar Khan verfasserin aut Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of special wearable/portable electronic devices for health monitoring is rapidly growing to cope with different health parameters. The emergence of wearable devices and its growing demand has widened the scope of self-powered wearable devices with the possibility to eliminate batteries. For instance, the wearable thermoelectric energy harvester (TEEH) is an alternate to batteries, which has been used in this study to develop four different self-powered wearable jacket prototypes and experimentally validated. It is observed that the thermal resistance of the cold side without a heat sink of prototype 4 is much greater than the rest of the proposed prototypes. Besides that, the thermal resistance of prototype 4 heat sinks is even lower among all proposed prototypes. Therefore, prototype 4 would have a relatively higher heat transfer coefficient which results in improved power generation. Moreover, an increase in heat transfer coefficient is observed with an increase in the temperature difference of the cold and hot sides of a TEEH. Thus, on the cold side, a heat flow increases which benefits heat dissipation and in turn reduces the thermal resistance of the heat sink. Besides that, the developed prototypes on people show that power generation is also affected by factors like ambient temperature, person’s activity, and wind breeze and does not depend on the metabolism. A different mechanism has been explored to maximize the power output within a 16.0 cm2 area, in order to justify the wearability of the energy harvester. Furthermore, it is observed that during the sunlight, any material covering the TEEH would improve the performance of prototypes. Prototypes are integrated into jacket and studied extensively. The TEEH system was designed to produce a maximum delivering power and power density of 699.71 μW and 43.73 μW/cm2, respectively. Moreover, the maximum voltage produced is 62.6 mV at an optimal load of 5.6 Ω. Furthermore, the TEEH (prototype 4) is connected to a power management circuit of ECT310 and LTC3108 and has been able to power 18 LEDs. Technology (General) Farid Ullah Khan verfasserin aut In Journal of Sensors Hindawi Limited, 2008 (2021) (DE-627)550736751 (DE-600)2397931-8 1687725X nnns year:2021 https://doi.org/10.1155/2021/9976089 kostenfrei https://doaj.org/article/64a8b27260d74ec6a5a64098448804a3 kostenfrei http://dx.doi.org/10.1155/2021/9976089 kostenfrei https://doaj.org/toc/1687-7268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfields_unstemmed |
10.1155/2021/9976089 doi (DE-627)DOAJ002945568 (DE-599)DOAJ64a8b27260d74ec6a5a64098448804a3 DE-627 ger DE-627 rakwb eng T1-995 Atif Sardar Khan verfasserin aut Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of special wearable/portable electronic devices for health monitoring is rapidly growing to cope with different health parameters. The emergence of wearable devices and its growing demand has widened the scope of self-powered wearable devices with the possibility to eliminate batteries. For instance, the wearable thermoelectric energy harvester (TEEH) is an alternate to batteries, which has been used in this study to develop four different self-powered wearable jacket prototypes and experimentally validated. It is observed that the thermal resistance of the cold side without a heat sink of prototype 4 is much greater than the rest of the proposed prototypes. Besides that, the thermal resistance of prototype 4 heat sinks is even lower among all proposed prototypes. Therefore, prototype 4 would have a relatively higher heat transfer coefficient which results in improved power generation. Moreover, an increase in heat transfer coefficient is observed with an increase in the temperature difference of the cold and hot sides of a TEEH. Thus, on the cold side, a heat flow increases which benefits heat dissipation and in turn reduces the thermal resistance of the heat sink. Besides that, the developed prototypes on people show that power generation is also affected by factors like ambient temperature, person’s activity, and wind breeze and does not depend on the metabolism. A different mechanism has been explored to maximize the power output within a 16.0 cm2 area, in order to justify the wearability of the energy harvester. Furthermore, it is observed that during the sunlight, any material covering the TEEH would improve the performance of prototypes. Prototypes are integrated into jacket and studied extensively. The TEEH system was designed to produce a maximum delivering power and power density of 699.71 μW and 43.73 μW/cm2, respectively. Moreover, the maximum voltage produced is 62.6 mV at an optimal load of 5.6 Ω. Furthermore, the TEEH (prototype 4) is connected to a power management circuit of ECT310 and LTC3108 and has been able to power 18 LEDs. Technology (General) Farid Ullah Khan verfasserin aut In Journal of Sensors Hindawi Limited, 2008 (2021) (DE-627)550736751 (DE-600)2397931-8 1687725X nnns year:2021 https://doi.org/10.1155/2021/9976089 kostenfrei https://doaj.org/article/64a8b27260d74ec6a5a64098448804a3 kostenfrei http://dx.doi.org/10.1155/2021/9976089 kostenfrei https://doaj.org/toc/1687-7268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfieldsGer |
10.1155/2021/9976089 doi (DE-627)DOAJ002945568 (DE-599)DOAJ64a8b27260d74ec6a5a64098448804a3 DE-627 ger DE-627 rakwb eng T1-995 Atif Sardar Khan verfasserin aut Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of special wearable/portable electronic devices for health monitoring is rapidly growing to cope with different health parameters. The emergence of wearable devices and its growing demand has widened the scope of self-powered wearable devices with the possibility to eliminate batteries. For instance, the wearable thermoelectric energy harvester (TEEH) is an alternate to batteries, which has been used in this study to develop four different self-powered wearable jacket prototypes and experimentally validated. It is observed that the thermal resistance of the cold side without a heat sink of prototype 4 is much greater than the rest of the proposed prototypes. Besides that, the thermal resistance of prototype 4 heat sinks is even lower among all proposed prototypes. Therefore, prototype 4 would have a relatively higher heat transfer coefficient which results in improved power generation. Moreover, an increase in heat transfer coefficient is observed with an increase in the temperature difference of the cold and hot sides of a TEEH. Thus, on the cold side, a heat flow increases which benefits heat dissipation and in turn reduces the thermal resistance of the heat sink. Besides that, the developed prototypes on people show that power generation is also affected by factors like ambient temperature, person’s activity, and wind breeze and does not depend on the metabolism. A different mechanism has been explored to maximize the power output within a 16.0 cm2 area, in order to justify the wearability of the energy harvester. Furthermore, it is observed that during the sunlight, any material covering the TEEH would improve the performance of prototypes. Prototypes are integrated into jacket and studied extensively. The TEEH system was designed to produce a maximum delivering power and power density of 699.71 μW and 43.73 μW/cm2, respectively. Moreover, the maximum voltage produced is 62.6 mV at an optimal load of 5.6 Ω. Furthermore, the TEEH (prototype 4) is connected to a power management circuit of ECT310 and LTC3108 and has been able to power 18 LEDs. Technology (General) Farid Ullah Khan verfasserin aut In Journal of Sensors Hindawi Limited, 2008 (2021) (DE-627)550736751 (DE-600)2397931-8 1687725X nnns year:2021 https://doi.org/10.1155/2021/9976089 kostenfrei https://doaj.org/article/64a8b27260d74ec6a5a64098448804a3 kostenfrei http://dx.doi.org/10.1155/2021/9976089 kostenfrei https://doaj.org/toc/1687-7268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfieldsSound |
10.1155/2021/9976089 doi (DE-627)DOAJ002945568 (DE-599)DOAJ64a8b27260d74ec6a5a64098448804a3 DE-627 ger DE-627 rakwb eng T1-995 Atif Sardar Khan verfasserin aut Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of special wearable/portable electronic devices for health monitoring is rapidly growing to cope with different health parameters. The emergence of wearable devices and its growing demand has widened the scope of self-powered wearable devices with the possibility to eliminate batteries. For instance, the wearable thermoelectric energy harvester (TEEH) is an alternate to batteries, which has been used in this study to develop four different self-powered wearable jacket prototypes and experimentally validated. It is observed that the thermal resistance of the cold side without a heat sink of prototype 4 is much greater than the rest of the proposed prototypes. Besides that, the thermal resistance of prototype 4 heat sinks is even lower among all proposed prototypes. Therefore, prototype 4 would have a relatively higher heat transfer coefficient which results in improved power generation. Moreover, an increase in heat transfer coefficient is observed with an increase in the temperature difference of the cold and hot sides of a TEEH. Thus, on the cold side, a heat flow increases which benefits heat dissipation and in turn reduces the thermal resistance of the heat sink. Besides that, the developed prototypes on people show that power generation is also affected by factors like ambient temperature, person’s activity, and wind breeze and does not depend on the metabolism. A different mechanism has been explored to maximize the power output within a 16.0 cm2 area, in order to justify the wearability of the energy harvester. Furthermore, it is observed that during the sunlight, any material covering the TEEH would improve the performance of prototypes. Prototypes are integrated into jacket and studied extensively. The TEEH system was designed to produce a maximum delivering power and power density of 699.71 μW and 43.73 μW/cm2, respectively. Moreover, the maximum voltage produced is 62.6 mV at an optimal load of 5.6 Ω. Furthermore, the TEEH (prototype 4) is connected to a power management circuit of ECT310 and LTC3108 and has been able to power 18 LEDs. Technology (General) Farid Ullah Khan verfasserin aut In Journal of Sensors Hindawi Limited, 2008 (2021) (DE-627)550736751 (DE-600)2397931-8 1687725X nnns year:2021 https://doi.org/10.1155/2021/9976089 kostenfrei https://doaj.org/article/64a8b27260d74ec6a5a64098448804a3 kostenfrei http://dx.doi.org/10.1155/2021/9976089 kostenfrei https://doaj.org/toc/1687-7268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
language |
English |
source |
In Journal of Sensors (2021) year:2021 |
sourceStr |
In Journal of Sensors (2021) year:2021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Technology (General) |
isfreeaccess_bool |
true |
container_title |
Journal of Sensors |
authorswithroles_txt_mv |
Atif Sardar Khan @@aut@@ Farid Ullah Khan @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
550736751 |
id |
DOAJ002945568 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ002945568</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502211435.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2021/9976089</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ002945568</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ64a8b27260d74ec6a5a64098448804a3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T1-995</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Atif Sardar Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The development of special wearable/portable electronic devices for health monitoring is rapidly growing to cope with different health parameters. The emergence of wearable devices and its growing demand has widened the scope of self-powered wearable devices with the possibility to eliminate batteries. For instance, the wearable thermoelectric energy harvester (TEEH) is an alternate to batteries, which has been used in this study to develop four different self-powered wearable jacket prototypes and experimentally validated. It is observed that the thermal resistance of the cold side without a heat sink of prototype 4 is much greater than the rest of the proposed prototypes. Besides that, the thermal resistance of prototype 4 heat sinks is even lower among all proposed prototypes. Therefore, prototype 4 would have a relatively higher heat transfer coefficient which results in improved power generation. Moreover, an increase in heat transfer coefficient is observed with an increase in the temperature difference of the cold and hot sides of a TEEH. Thus, on the cold side, a heat flow increases which benefits heat dissipation and in turn reduces the thermal resistance of the heat sink. Besides that, the developed prototypes on people show that power generation is also affected by factors like ambient temperature, person’s activity, and wind breeze and does not depend on the metabolism. A different mechanism has been explored to maximize the power output within a 16.0 cm2 area, in order to justify the wearability of the energy harvester. Furthermore, it is observed that during the sunlight, any material covering the TEEH would improve the performance of prototypes. Prototypes are integrated into jacket and studied extensively. The TEEH system was designed to produce a maximum delivering power and power density of 699.71 μW and 43.73 μW/cm2, respectively. Moreover, the maximum voltage produced is 62.6 mV at an optimal load of 5.6 Ω. Furthermore, the TEEH (prototype 4) is connected to a power management circuit of ECT310 and LTC3108 and has been able to power 18 LEDs.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Farid Ullah Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Sensors</subfield><subfield code="d">Hindawi Limited, 2008</subfield><subfield code="g">(2021)</subfield><subfield code="w">(DE-627)550736751</subfield><subfield code="w">(DE-600)2397931-8</subfield><subfield code="x">1687725X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2021/9976089</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/64a8b27260d74ec6a5a64098448804a3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2021/9976089</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-7268</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2021</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Atif Sardar Khan |
spellingShingle |
Atif Sardar Khan misc T1-995 misc Technology (General) Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications |
authorStr |
Atif Sardar Khan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)550736751 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T1-995 |
illustrated |
Not Illustrated |
issn |
1687725X |
topic_title |
T1-995 Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications |
topic |
misc T1-995 misc Technology (General) |
topic_unstemmed |
misc T1-995 misc Technology (General) |
topic_browse |
misc T1-995 misc Technology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Sensors |
hierarchy_parent_id |
550736751 |
hierarchy_top_title |
Journal of Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)550736751 (DE-600)2397931-8 |
title |
Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications |
ctrlnum |
(DE-627)DOAJ002945568 (DE-599)DOAJ64a8b27260d74ec6a5a64098448804a3 |
title_full |
Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications |
author_sort |
Atif Sardar Khan |
journal |
Journal of Sensors |
journalStr |
Journal of Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Atif Sardar Khan Farid Ullah Khan |
class |
T1-995 |
format_se |
Elektronische Aufsätze |
author-letter |
Atif Sardar Khan |
doi_str_mv |
10.1155/2021/9976089 |
author2-role |
verfasserin |
title_sort |
experimentation of a wearable self-powered jacket harvesting body heat for wearable device applications |
callnumber |
T1-995 |
title_auth |
Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications |
abstract |
The development of special wearable/portable electronic devices for health monitoring is rapidly growing to cope with different health parameters. The emergence of wearable devices and its growing demand has widened the scope of self-powered wearable devices with the possibility to eliminate batteries. For instance, the wearable thermoelectric energy harvester (TEEH) is an alternate to batteries, which has been used in this study to develop four different self-powered wearable jacket prototypes and experimentally validated. It is observed that the thermal resistance of the cold side without a heat sink of prototype 4 is much greater than the rest of the proposed prototypes. Besides that, the thermal resistance of prototype 4 heat sinks is even lower among all proposed prototypes. Therefore, prototype 4 would have a relatively higher heat transfer coefficient which results in improved power generation. Moreover, an increase in heat transfer coefficient is observed with an increase in the temperature difference of the cold and hot sides of a TEEH. Thus, on the cold side, a heat flow increases which benefits heat dissipation and in turn reduces the thermal resistance of the heat sink. Besides that, the developed prototypes on people show that power generation is also affected by factors like ambient temperature, person’s activity, and wind breeze and does not depend on the metabolism. A different mechanism has been explored to maximize the power output within a 16.0 cm2 area, in order to justify the wearability of the energy harvester. Furthermore, it is observed that during the sunlight, any material covering the TEEH would improve the performance of prototypes. Prototypes are integrated into jacket and studied extensively. The TEEH system was designed to produce a maximum delivering power and power density of 699.71 μW and 43.73 μW/cm2, respectively. Moreover, the maximum voltage produced is 62.6 mV at an optimal load of 5.6 Ω. Furthermore, the TEEH (prototype 4) is connected to a power management circuit of ECT310 and LTC3108 and has been able to power 18 LEDs. |
abstractGer |
The development of special wearable/portable electronic devices for health monitoring is rapidly growing to cope with different health parameters. The emergence of wearable devices and its growing demand has widened the scope of self-powered wearable devices with the possibility to eliminate batteries. For instance, the wearable thermoelectric energy harvester (TEEH) is an alternate to batteries, which has been used in this study to develop four different self-powered wearable jacket prototypes and experimentally validated. It is observed that the thermal resistance of the cold side without a heat sink of prototype 4 is much greater than the rest of the proposed prototypes. Besides that, the thermal resistance of prototype 4 heat sinks is even lower among all proposed prototypes. Therefore, prototype 4 would have a relatively higher heat transfer coefficient which results in improved power generation. Moreover, an increase in heat transfer coefficient is observed with an increase in the temperature difference of the cold and hot sides of a TEEH. Thus, on the cold side, a heat flow increases which benefits heat dissipation and in turn reduces the thermal resistance of the heat sink. Besides that, the developed prototypes on people show that power generation is also affected by factors like ambient temperature, person’s activity, and wind breeze and does not depend on the metabolism. A different mechanism has been explored to maximize the power output within a 16.0 cm2 area, in order to justify the wearability of the energy harvester. Furthermore, it is observed that during the sunlight, any material covering the TEEH would improve the performance of prototypes. Prototypes are integrated into jacket and studied extensively. The TEEH system was designed to produce a maximum delivering power and power density of 699.71 μW and 43.73 μW/cm2, respectively. Moreover, the maximum voltage produced is 62.6 mV at an optimal load of 5.6 Ω. Furthermore, the TEEH (prototype 4) is connected to a power management circuit of ECT310 and LTC3108 and has been able to power 18 LEDs. |
abstract_unstemmed |
The development of special wearable/portable electronic devices for health monitoring is rapidly growing to cope with different health parameters. The emergence of wearable devices and its growing demand has widened the scope of self-powered wearable devices with the possibility to eliminate batteries. For instance, the wearable thermoelectric energy harvester (TEEH) is an alternate to batteries, which has been used in this study to develop four different self-powered wearable jacket prototypes and experimentally validated. It is observed that the thermal resistance of the cold side without a heat sink of prototype 4 is much greater than the rest of the proposed prototypes. Besides that, the thermal resistance of prototype 4 heat sinks is even lower among all proposed prototypes. Therefore, prototype 4 would have a relatively higher heat transfer coefficient which results in improved power generation. Moreover, an increase in heat transfer coefficient is observed with an increase in the temperature difference of the cold and hot sides of a TEEH. Thus, on the cold side, a heat flow increases which benefits heat dissipation and in turn reduces the thermal resistance of the heat sink. Besides that, the developed prototypes on people show that power generation is also affected by factors like ambient temperature, person’s activity, and wind breeze and does not depend on the metabolism. A different mechanism has been explored to maximize the power output within a 16.0 cm2 area, in order to justify the wearability of the energy harvester. Furthermore, it is observed that during the sunlight, any material covering the TEEH would improve the performance of prototypes. Prototypes are integrated into jacket and studied extensively. The TEEH system was designed to produce a maximum delivering power and power density of 699.71 μW and 43.73 μW/cm2, respectively. Moreover, the maximum voltage produced is 62.6 mV at an optimal load of 5.6 Ω. Furthermore, the TEEH (prototype 4) is connected to a power management circuit of ECT310 and LTC3108 and has been able to power 18 LEDs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications |
url |
https://doi.org/10.1155/2021/9976089 https://doaj.org/article/64a8b27260d74ec6a5a64098448804a3 http://dx.doi.org/10.1155/2021/9976089 https://doaj.org/toc/1687-7268 |
remote_bool |
true |
author2 |
Farid Ullah Khan |
author2Str |
Farid Ullah Khan |
ppnlink |
550736751 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2021/9976089 |
callnumber-a |
T1-995 |
up_date |
2024-07-03T15:02:29.382Z |
_version_ |
1803570589872422912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ002945568</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502211435.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2021/9976089</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ002945568</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ64a8b27260d74ec6a5a64098448804a3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T1-995</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Atif Sardar Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The development of special wearable/portable electronic devices for health monitoring is rapidly growing to cope with different health parameters. The emergence of wearable devices and its growing demand has widened the scope of self-powered wearable devices with the possibility to eliminate batteries. For instance, the wearable thermoelectric energy harvester (TEEH) is an alternate to batteries, which has been used in this study to develop four different self-powered wearable jacket prototypes and experimentally validated. It is observed that the thermal resistance of the cold side without a heat sink of prototype 4 is much greater than the rest of the proposed prototypes. Besides that, the thermal resistance of prototype 4 heat sinks is even lower among all proposed prototypes. Therefore, prototype 4 would have a relatively higher heat transfer coefficient which results in improved power generation. Moreover, an increase in heat transfer coefficient is observed with an increase in the temperature difference of the cold and hot sides of a TEEH. Thus, on the cold side, a heat flow increases which benefits heat dissipation and in turn reduces the thermal resistance of the heat sink. Besides that, the developed prototypes on people show that power generation is also affected by factors like ambient temperature, person’s activity, and wind breeze and does not depend on the metabolism. A different mechanism has been explored to maximize the power output within a 16.0 cm2 area, in order to justify the wearability of the energy harvester. Furthermore, it is observed that during the sunlight, any material covering the TEEH would improve the performance of prototypes. Prototypes are integrated into jacket and studied extensively. The TEEH system was designed to produce a maximum delivering power and power density of 699.71 μW and 43.73 μW/cm2, respectively. Moreover, the maximum voltage produced is 62.6 mV at an optimal load of 5.6 Ω. Furthermore, the TEEH (prototype 4) is connected to a power management circuit of ECT310 and LTC3108 and has been able to power 18 LEDs.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Farid Ullah Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Sensors</subfield><subfield code="d">Hindawi Limited, 2008</subfield><subfield code="g">(2021)</subfield><subfield code="w">(DE-627)550736751</subfield><subfield code="w">(DE-600)2397931-8</subfield><subfield code="x">1687725X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2021/9976089</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/64a8b27260d74ec6a5a64098448804a3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2021/9976089</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-7268</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2021</subfield></datafield></record></collection>
|
score |
7.4007854 |