Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data
Accurate estimates of soil hydraulic parameters and dispersivities are crucial to simulate water flow and solute transport in terrestrial systems, particularly in the vadose zone. However, parameters obtained from inverse modeling can be ambiguous when identifying multiple parameters simultaneously...
Ausführliche Beschreibung
Autor*in: |
Jannis Groh [verfasserIn] Christine Stumpp [verfasserIn] Andreas Lücke [verfasserIn] Thomas Pütz [verfasserIn] Jan Vanderborght [verfasserIn] Harry Vereecken [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Übergeordnetes Werk: |
In: Vadose Zone Journal - Wiley, 2019, 17(2018), 1 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2018 ; number:1 |
Links: |
---|
DOI / URN: |
10.2136/vzj2017.09.0168 |
---|
Katalog-ID: |
DOAJ003120716 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ003120716 | ||
003 | DE-627 | ||
005 | 20230502232434.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2136/vzj2017.09.0168 |2 doi | |
035 | |a (DE-627)DOAJ003120716 | ||
035 | |a (DE-599)DOAJ19f6fe7ae26c469187a8c617e7ea2fb4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a GE1-350 | |
050 | 0 | |a QE1-996.5 | |
100 | 0 | |a Jannis Groh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Accurate estimates of soil hydraulic parameters and dispersivities are crucial to simulate water flow and solute transport in terrestrial systems, particularly in the vadose zone. However, parameters obtained from inverse modeling can be ambiguous when identifying multiple parameters simultaneously and when boundary conditions are not well known. Here, we performed an inverse modeling study in which we estimated soil hydraulic parameters and dispersivities of layered soils from soil water content, matric potential, and stable water isotope (δO) measurements in weighable lysimeter systems. We used different optimization strategies to investigate which observation types are necessary for simultaneously estimating soil hydraulic and solute transport parameters. Combining water content, matric potential, and tracer (e.g., δO) data in one objective function (OF) was found to be the best strategy for estimating parameters that can simulate all observed water flow and solute transport variables. A sequential optimization, in which first an OF with only water flow variables and subsequently an OF with transport variables was optimized, performed slightly worse indicating that transport variables contained additional information for estimating soil hydraulic parameters. Hydraulic parameters that were obtained from optimizing OFs that used either water contents or matric potential could not predict non-measured water flow variables. When a bromide (Br) tracer experiment was simulated using the optimized parameters, the arrival time of the bromide pulse was underestimated. This suggested that Br sorbed onto clay minerals and amorphous oxides under the prevailing geochemical conditions with low pH values. When accounting for anion adsorption in the simulation, Br concentrations were well predicted, which validated the dispersivity parameterization. | ||
653 | 0 | |a Environmental sciences | |
653 | 0 | |a Geology | |
700 | 0 | |a Christine Stumpp |e verfasserin |4 aut | |
700 | 0 | |a Andreas Lücke |e verfasserin |4 aut | |
700 | 0 | |a Thomas Pütz |e verfasserin |4 aut | |
700 | 0 | |a Jan Vanderborght |e verfasserin |4 aut | |
700 | 0 | |a Harry Vereecken |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Vadose Zone Journal |d Wiley, 2019 |g 17(2018), 1 |w (DE-627)354193597 |w (DE-600)2088189-7 |x 15391663 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2018 |g number:1 |
856 | 4 | 0 | |u https://doi.org/10.2136/vzj2017.09.0168 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/19f6fe7ae26c469187a8c617e7ea2fb4 |z kostenfrei |
856 | 4 | 0 | |u https://dl.sciencesocieties.org/publications/vzj/articles/17/1/170168 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1539-1663 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2018 |e 1 |
author_variant |
j g jg c s cs a l al t p tp j v jv h v hv |
---|---|
matchkey_str |
article:15391663:2018----::nesetmtoosihdalcntasotaaeesfaeesisrmaes |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
GE |
publishDate |
2018 |
allfields |
10.2136/vzj2017.09.0168 doi (DE-627)DOAJ003120716 (DE-599)DOAJ19f6fe7ae26c469187a8c617e7ea2fb4 DE-627 ger DE-627 rakwb eng GE1-350 QE1-996.5 Jannis Groh verfasserin aut Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Accurate estimates of soil hydraulic parameters and dispersivities are crucial to simulate water flow and solute transport in terrestrial systems, particularly in the vadose zone. However, parameters obtained from inverse modeling can be ambiguous when identifying multiple parameters simultaneously and when boundary conditions are not well known. Here, we performed an inverse modeling study in which we estimated soil hydraulic parameters and dispersivities of layered soils from soil water content, matric potential, and stable water isotope (δO) measurements in weighable lysimeter systems. We used different optimization strategies to investigate which observation types are necessary for simultaneously estimating soil hydraulic and solute transport parameters. Combining water content, matric potential, and tracer (e.g., δO) data in one objective function (OF) was found to be the best strategy for estimating parameters that can simulate all observed water flow and solute transport variables. A sequential optimization, in which first an OF with only water flow variables and subsequently an OF with transport variables was optimized, performed slightly worse indicating that transport variables contained additional information for estimating soil hydraulic parameters. Hydraulic parameters that were obtained from optimizing OFs that used either water contents or matric potential could not predict non-measured water flow variables. When a bromide (Br) tracer experiment was simulated using the optimized parameters, the arrival time of the bromide pulse was underestimated. This suggested that Br sorbed onto clay minerals and amorphous oxides under the prevailing geochemical conditions with low pH values. When accounting for anion adsorption in the simulation, Br concentrations were well predicted, which validated the dispersivity parameterization. Environmental sciences Geology Christine Stumpp verfasserin aut Andreas Lücke verfasserin aut Thomas Pütz verfasserin aut Jan Vanderborght verfasserin aut Harry Vereecken verfasserin aut In Vadose Zone Journal Wiley, 2019 17(2018), 1 (DE-627)354193597 (DE-600)2088189-7 15391663 nnns volume:17 year:2018 number:1 https://doi.org/10.2136/vzj2017.09.0168 kostenfrei https://doaj.org/article/19f6fe7ae26c469187a8c617e7ea2fb4 kostenfrei https://dl.sciencesocieties.org/publications/vzj/articles/17/1/170168 kostenfrei https://doaj.org/toc/1539-1663 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 17 2018 1 |
spelling |
10.2136/vzj2017.09.0168 doi (DE-627)DOAJ003120716 (DE-599)DOAJ19f6fe7ae26c469187a8c617e7ea2fb4 DE-627 ger DE-627 rakwb eng GE1-350 QE1-996.5 Jannis Groh verfasserin aut Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Accurate estimates of soil hydraulic parameters and dispersivities are crucial to simulate water flow and solute transport in terrestrial systems, particularly in the vadose zone. However, parameters obtained from inverse modeling can be ambiguous when identifying multiple parameters simultaneously and when boundary conditions are not well known. Here, we performed an inverse modeling study in which we estimated soil hydraulic parameters and dispersivities of layered soils from soil water content, matric potential, and stable water isotope (δO) measurements in weighable lysimeter systems. We used different optimization strategies to investigate which observation types are necessary for simultaneously estimating soil hydraulic and solute transport parameters. Combining water content, matric potential, and tracer (e.g., δO) data in one objective function (OF) was found to be the best strategy for estimating parameters that can simulate all observed water flow and solute transport variables. A sequential optimization, in which first an OF with only water flow variables and subsequently an OF with transport variables was optimized, performed slightly worse indicating that transport variables contained additional information for estimating soil hydraulic parameters. Hydraulic parameters that were obtained from optimizing OFs that used either water contents or matric potential could not predict non-measured water flow variables. When a bromide (Br) tracer experiment was simulated using the optimized parameters, the arrival time of the bromide pulse was underestimated. This suggested that Br sorbed onto clay minerals and amorphous oxides under the prevailing geochemical conditions with low pH values. When accounting for anion adsorption in the simulation, Br concentrations were well predicted, which validated the dispersivity parameterization. Environmental sciences Geology Christine Stumpp verfasserin aut Andreas Lücke verfasserin aut Thomas Pütz verfasserin aut Jan Vanderborght verfasserin aut Harry Vereecken verfasserin aut In Vadose Zone Journal Wiley, 2019 17(2018), 1 (DE-627)354193597 (DE-600)2088189-7 15391663 nnns volume:17 year:2018 number:1 https://doi.org/10.2136/vzj2017.09.0168 kostenfrei https://doaj.org/article/19f6fe7ae26c469187a8c617e7ea2fb4 kostenfrei https://dl.sciencesocieties.org/publications/vzj/articles/17/1/170168 kostenfrei https://doaj.org/toc/1539-1663 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 17 2018 1 |
allfields_unstemmed |
10.2136/vzj2017.09.0168 doi (DE-627)DOAJ003120716 (DE-599)DOAJ19f6fe7ae26c469187a8c617e7ea2fb4 DE-627 ger DE-627 rakwb eng GE1-350 QE1-996.5 Jannis Groh verfasserin aut Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Accurate estimates of soil hydraulic parameters and dispersivities are crucial to simulate water flow and solute transport in terrestrial systems, particularly in the vadose zone. However, parameters obtained from inverse modeling can be ambiguous when identifying multiple parameters simultaneously and when boundary conditions are not well known. Here, we performed an inverse modeling study in which we estimated soil hydraulic parameters and dispersivities of layered soils from soil water content, matric potential, and stable water isotope (δO) measurements in weighable lysimeter systems. We used different optimization strategies to investigate which observation types are necessary for simultaneously estimating soil hydraulic and solute transport parameters. Combining water content, matric potential, and tracer (e.g., δO) data in one objective function (OF) was found to be the best strategy for estimating parameters that can simulate all observed water flow and solute transport variables. A sequential optimization, in which first an OF with only water flow variables and subsequently an OF with transport variables was optimized, performed slightly worse indicating that transport variables contained additional information for estimating soil hydraulic parameters. Hydraulic parameters that were obtained from optimizing OFs that used either water contents or matric potential could not predict non-measured water flow variables. When a bromide (Br) tracer experiment was simulated using the optimized parameters, the arrival time of the bromide pulse was underestimated. This suggested that Br sorbed onto clay minerals and amorphous oxides under the prevailing geochemical conditions with low pH values. When accounting for anion adsorption in the simulation, Br concentrations were well predicted, which validated the dispersivity parameterization. Environmental sciences Geology Christine Stumpp verfasserin aut Andreas Lücke verfasserin aut Thomas Pütz verfasserin aut Jan Vanderborght verfasserin aut Harry Vereecken verfasserin aut In Vadose Zone Journal Wiley, 2019 17(2018), 1 (DE-627)354193597 (DE-600)2088189-7 15391663 nnns volume:17 year:2018 number:1 https://doi.org/10.2136/vzj2017.09.0168 kostenfrei https://doaj.org/article/19f6fe7ae26c469187a8c617e7ea2fb4 kostenfrei https://dl.sciencesocieties.org/publications/vzj/articles/17/1/170168 kostenfrei https://doaj.org/toc/1539-1663 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 17 2018 1 |
allfieldsGer |
10.2136/vzj2017.09.0168 doi (DE-627)DOAJ003120716 (DE-599)DOAJ19f6fe7ae26c469187a8c617e7ea2fb4 DE-627 ger DE-627 rakwb eng GE1-350 QE1-996.5 Jannis Groh verfasserin aut Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Accurate estimates of soil hydraulic parameters and dispersivities are crucial to simulate water flow and solute transport in terrestrial systems, particularly in the vadose zone. However, parameters obtained from inverse modeling can be ambiguous when identifying multiple parameters simultaneously and when boundary conditions are not well known. Here, we performed an inverse modeling study in which we estimated soil hydraulic parameters and dispersivities of layered soils from soil water content, matric potential, and stable water isotope (δO) measurements in weighable lysimeter systems. We used different optimization strategies to investigate which observation types are necessary for simultaneously estimating soil hydraulic and solute transport parameters. Combining water content, matric potential, and tracer (e.g., δO) data in one objective function (OF) was found to be the best strategy for estimating parameters that can simulate all observed water flow and solute transport variables. A sequential optimization, in which first an OF with only water flow variables and subsequently an OF with transport variables was optimized, performed slightly worse indicating that transport variables contained additional information for estimating soil hydraulic parameters. Hydraulic parameters that were obtained from optimizing OFs that used either water contents or matric potential could not predict non-measured water flow variables. When a bromide (Br) tracer experiment was simulated using the optimized parameters, the arrival time of the bromide pulse was underestimated. This suggested that Br sorbed onto clay minerals and amorphous oxides under the prevailing geochemical conditions with low pH values. When accounting for anion adsorption in the simulation, Br concentrations were well predicted, which validated the dispersivity parameterization. Environmental sciences Geology Christine Stumpp verfasserin aut Andreas Lücke verfasserin aut Thomas Pütz verfasserin aut Jan Vanderborght verfasserin aut Harry Vereecken verfasserin aut In Vadose Zone Journal Wiley, 2019 17(2018), 1 (DE-627)354193597 (DE-600)2088189-7 15391663 nnns volume:17 year:2018 number:1 https://doi.org/10.2136/vzj2017.09.0168 kostenfrei https://doaj.org/article/19f6fe7ae26c469187a8c617e7ea2fb4 kostenfrei https://dl.sciencesocieties.org/publications/vzj/articles/17/1/170168 kostenfrei https://doaj.org/toc/1539-1663 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 17 2018 1 |
allfieldsSound |
10.2136/vzj2017.09.0168 doi (DE-627)DOAJ003120716 (DE-599)DOAJ19f6fe7ae26c469187a8c617e7ea2fb4 DE-627 ger DE-627 rakwb eng GE1-350 QE1-996.5 Jannis Groh verfasserin aut Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Accurate estimates of soil hydraulic parameters and dispersivities are crucial to simulate water flow and solute transport in terrestrial systems, particularly in the vadose zone. However, parameters obtained from inverse modeling can be ambiguous when identifying multiple parameters simultaneously and when boundary conditions are not well known. Here, we performed an inverse modeling study in which we estimated soil hydraulic parameters and dispersivities of layered soils from soil water content, matric potential, and stable water isotope (δO) measurements in weighable lysimeter systems. We used different optimization strategies to investigate which observation types are necessary for simultaneously estimating soil hydraulic and solute transport parameters. Combining water content, matric potential, and tracer (e.g., δO) data in one objective function (OF) was found to be the best strategy for estimating parameters that can simulate all observed water flow and solute transport variables. A sequential optimization, in which first an OF with only water flow variables and subsequently an OF with transport variables was optimized, performed slightly worse indicating that transport variables contained additional information for estimating soil hydraulic parameters. Hydraulic parameters that were obtained from optimizing OFs that used either water contents or matric potential could not predict non-measured water flow variables. When a bromide (Br) tracer experiment was simulated using the optimized parameters, the arrival time of the bromide pulse was underestimated. This suggested that Br sorbed onto clay minerals and amorphous oxides under the prevailing geochemical conditions with low pH values. When accounting for anion adsorption in the simulation, Br concentrations were well predicted, which validated the dispersivity parameterization. Environmental sciences Geology Christine Stumpp verfasserin aut Andreas Lücke verfasserin aut Thomas Pütz verfasserin aut Jan Vanderborght verfasserin aut Harry Vereecken verfasserin aut In Vadose Zone Journal Wiley, 2019 17(2018), 1 (DE-627)354193597 (DE-600)2088189-7 15391663 nnns volume:17 year:2018 number:1 https://doi.org/10.2136/vzj2017.09.0168 kostenfrei https://doaj.org/article/19f6fe7ae26c469187a8c617e7ea2fb4 kostenfrei https://dl.sciencesocieties.org/publications/vzj/articles/17/1/170168 kostenfrei https://doaj.org/toc/1539-1663 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 17 2018 1 |
language |
English |
source |
In Vadose Zone Journal 17(2018), 1 volume:17 year:2018 number:1 |
sourceStr |
In Vadose Zone Journal 17(2018), 1 volume:17 year:2018 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Environmental sciences Geology |
isfreeaccess_bool |
true |
container_title |
Vadose Zone Journal |
authorswithroles_txt_mv |
Jannis Groh @@aut@@ Christine Stumpp @@aut@@ Andreas Lücke @@aut@@ Thomas Pütz @@aut@@ Jan Vanderborght @@aut@@ Harry Vereecken @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
354193597 |
id |
DOAJ003120716 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003120716</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502232434.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2136/vzj2017.09.0168</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003120716</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ19f6fe7ae26c469187a8c617e7ea2fb4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jannis Groh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Accurate estimates of soil hydraulic parameters and dispersivities are crucial to simulate water flow and solute transport in terrestrial systems, particularly in the vadose zone. However, parameters obtained from inverse modeling can be ambiguous when identifying multiple parameters simultaneously and when boundary conditions are not well known. Here, we performed an inverse modeling study in which we estimated soil hydraulic parameters and dispersivities of layered soils from soil water content, matric potential, and stable water isotope (δO) measurements in weighable lysimeter systems. We used different optimization strategies to investigate which observation types are necessary for simultaneously estimating soil hydraulic and solute transport parameters. Combining water content, matric potential, and tracer (e.g., δO) data in one objective function (OF) was found to be the best strategy for estimating parameters that can simulate all observed water flow and solute transport variables. A sequential optimization, in which first an OF with only water flow variables and subsequently an OF with transport variables was optimized, performed slightly worse indicating that transport variables contained additional information for estimating soil hydraulic parameters. Hydraulic parameters that were obtained from optimizing OFs that used either water contents or matric potential could not predict non-measured water flow variables. When a bromide (Br) tracer experiment was simulated using the optimized parameters, the arrival time of the bromide pulse was underestimated. This suggested that Br sorbed onto clay minerals and amorphous oxides under the prevailing geochemical conditions with low pH values. When accounting for anion adsorption in the simulation, Br concentrations were well predicted, which validated the dispersivity parameterization.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christine Stumpp</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andreas Lücke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas Pütz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jan Vanderborght</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Harry Vereecken</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Vadose Zone Journal</subfield><subfield code="d">Wiley, 2019</subfield><subfield code="g">17(2018), 1</subfield><subfield code="w">(DE-627)354193597</subfield><subfield code="w">(DE-600)2088189-7</subfield><subfield code="x">15391663</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2136/vzj2017.09.0168</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/19f6fe7ae26c469187a8c617e7ea2fb4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dl.sciencesocieties.org/publications/vzj/articles/17/1/170168</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1539-1663</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Jannis Groh |
spellingShingle |
Jannis Groh misc GE1-350 misc QE1-996.5 misc Environmental sciences misc Geology Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data |
authorStr |
Jannis Groh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)354193597 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GE1-350 |
illustrated |
Not Illustrated |
issn |
15391663 |
topic_title |
GE1-350 QE1-996.5 Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data |
topic |
misc GE1-350 misc QE1-996.5 misc Environmental sciences misc Geology |
topic_unstemmed |
misc GE1-350 misc QE1-996.5 misc Environmental sciences misc Geology |
topic_browse |
misc GE1-350 misc QE1-996.5 misc Environmental sciences misc Geology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Vadose Zone Journal |
hierarchy_parent_id |
354193597 |
hierarchy_top_title |
Vadose Zone Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)354193597 (DE-600)2088189-7 |
title |
Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data |
ctrlnum |
(DE-627)DOAJ003120716 (DE-599)DOAJ19f6fe7ae26c469187a8c617e7ea2fb4 |
title_full |
Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data |
author_sort |
Jannis Groh |
journal |
Vadose Zone Journal |
journalStr |
Vadose Zone Journal |
callnumber-first-code |
G |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Jannis Groh Christine Stumpp Andreas Lücke Thomas Pütz Jan Vanderborght Harry Vereecken |
container_volume |
17 |
class |
GE1-350 QE1-996.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Jannis Groh |
doi_str_mv |
10.2136/vzj2017.09.0168 |
author2-role |
verfasserin |
title_sort |
inverse estimation of soil hydraulic and transport parameters of layered soils from water stable isotope and lysimeter data |
callnumber |
GE1-350 |
title_auth |
Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data |
abstract |
Accurate estimates of soil hydraulic parameters and dispersivities are crucial to simulate water flow and solute transport in terrestrial systems, particularly in the vadose zone. However, parameters obtained from inverse modeling can be ambiguous when identifying multiple parameters simultaneously and when boundary conditions are not well known. Here, we performed an inverse modeling study in which we estimated soil hydraulic parameters and dispersivities of layered soils from soil water content, matric potential, and stable water isotope (δO) measurements in weighable lysimeter systems. We used different optimization strategies to investigate which observation types are necessary for simultaneously estimating soil hydraulic and solute transport parameters. Combining water content, matric potential, and tracer (e.g., δO) data in one objective function (OF) was found to be the best strategy for estimating parameters that can simulate all observed water flow and solute transport variables. A sequential optimization, in which first an OF with only water flow variables and subsequently an OF with transport variables was optimized, performed slightly worse indicating that transport variables contained additional information for estimating soil hydraulic parameters. Hydraulic parameters that were obtained from optimizing OFs that used either water contents or matric potential could not predict non-measured water flow variables. When a bromide (Br) tracer experiment was simulated using the optimized parameters, the arrival time of the bromide pulse was underestimated. This suggested that Br sorbed onto clay minerals and amorphous oxides under the prevailing geochemical conditions with low pH values. When accounting for anion adsorption in the simulation, Br concentrations were well predicted, which validated the dispersivity parameterization. |
abstractGer |
Accurate estimates of soil hydraulic parameters and dispersivities are crucial to simulate water flow and solute transport in terrestrial systems, particularly in the vadose zone. However, parameters obtained from inverse modeling can be ambiguous when identifying multiple parameters simultaneously and when boundary conditions are not well known. Here, we performed an inverse modeling study in which we estimated soil hydraulic parameters and dispersivities of layered soils from soil water content, matric potential, and stable water isotope (δO) measurements in weighable lysimeter systems. We used different optimization strategies to investigate which observation types are necessary for simultaneously estimating soil hydraulic and solute transport parameters. Combining water content, matric potential, and tracer (e.g., δO) data in one objective function (OF) was found to be the best strategy for estimating parameters that can simulate all observed water flow and solute transport variables. A sequential optimization, in which first an OF with only water flow variables and subsequently an OF with transport variables was optimized, performed slightly worse indicating that transport variables contained additional information for estimating soil hydraulic parameters. Hydraulic parameters that were obtained from optimizing OFs that used either water contents or matric potential could not predict non-measured water flow variables. When a bromide (Br) tracer experiment was simulated using the optimized parameters, the arrival time of the bromide pulse was underestimated. This suggested that Br sorbed onto clay minerals and amorphous oxides under the prevailing geochemical conditions with low pH values. When accounting for anion adsorption in the simulation, Br concentrations were well predicted, which validated the dispersivity parameterization. |
abstract_unstemmed |
Accurate estimates of soil hydraulic parameters and dispersivities are crucial to simulate water flow and solute transport in terrestrial systems, particularly in the vadose zone. However, parameters obtained from inverse modeling can be ambiguous when identifying multiple parameters simultaneously and when boundary conditions are not well known. Here, we performed an inverse modeling study in which we estimated soil hydraulic parameters and dispersivities of layered soils from soil water content, matric potential, and stable water isotope (δO) measurements in weighable lysimeter systems. We used different optimization strategies to investigate which observation types are necessary for simultaneously estimating soil hydraulic and solute transport parameters. Combining water content, matric potential, and tracer (e.g., δO) data in one objective function (OF) was found to be the best strategy for estimating parameters that can simulate all observed water flow and solute transport variables. A sequential optimization, in which first an OF with only water flow variables and subsequently an OF with transport variables was optimized, performed slightly worse indicating that transport variables contained additional information for estimating soil hydraulic parameters. Hydraulic parameters that were obtained from optimizing OFs that used either water contents or matric potential could not predict non-measured water flow variables. When a bromide (Br) tracer experiment was simulated using the optimized parameters, the arrival time of the bromide pulse was underestimated. This suggested that Br sorbed onto clay minerals and amorphous oxides under the prevailing geochemical conditions with low pH values. When accounting for anion adsorption in the simulation, Br concentrations were well predicted, which validated the dispersivity parameterization. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data |
url |
https://doi.org/10.2136/vzj2017.09.0168 https://doaj.org/article/19f6fe7ae26c469187a8c617e7ea2fb4 https://dl.sciencesocieties.org/publications/vzj/articles/17/1/170168 https://doaj.org/toc/1539-1663 |
remote_bool |
true |
author2 |
Christine Stumpp Andreas Lücke Thomas Pütz Jan Vanderborght Harry Vereecken |
author2Str |
Christine Stumpp Andreas Lücke Thomas Pütz Jan Vanderborght Harry Vereecken |
ppnlink |
354193597 |
callnumber-subject |
GE - Environmental Sciences |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2136/vzj2017.09.0168 |
callnumber-a |
GE1-350 |
up_date |
2024-07-03T16:05:38.897Z |
_version_ |
1803574563459563520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003120716</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502232434.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2136/vzj2017.09.0168</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003120716</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ19f6fe7ae26c469187a8c617e7ea2fb4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jannis Groh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Accurate estimates of soil hydraulic parameters and dispersivities are crucial to simulate water flow and solute transport in terrestrial systems, particularly in the vadose zone. However, parameters obtained from inverse modeling can be ambiguous when identifying multiple parameters simultaneously and when boundary conditions are not well known. Here, we performed an inverse modeling study in which we estimated soil hydraulic parameters and dispersivities of layered soils from soil water content, matric potential, and stable water isotope (δO) measurements in weighable lysimeter systems. We used different optimization strategies to investigate which observation types are necessary for simultaneously estimating soil hydraulic and solute transport parameters. Combining water content, matric potential, and tracer (e.g., δO) data in one objective function (OF) was found to be the best strategy for estimating parameters that can simulate all observed water flow and solute transport variables. A sequential optimization, in which first an OF with only water flow variables and subsequently an OF with transport variables was optimized, performed slightly worse indicating that transport variables contained additional information for estimating soil hydraulic parameters. Hydraulic parameters that were obtained from optimizing OFs that used either water contents or matric potential could not predict non-measured water flow variables. When a bromide (Br) tracer experiment was simulated using the optimized parameters, the arrival time of the bromide pulse was underestimated. This suggested that Br sorbed onto clay minerals and amorphous oxides under the prevailing geochemical conditions with low pH values. When accounting for anion adsorption in the simulation, Br concentrations were well predicted, which validated the dispersivity parameterization.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christine Stumpp</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andreas Lücke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas Pütz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jan Vanderborght</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Harry Vereecken</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Vadose Zone Journal</subfield><subfield code="d">Wiley, 2019</subfield><subfield code="g">17(2018), 1</subfield><subfield code="w">(DE-627)354193597</subfield><subfield code="w">(DE-600)2088189-7</subfield><subfield code="x">15391663</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2136/vzj2017.09.0168</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/19f6fe7ae26c469187a8c617e7ea2fb4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dl.sciencesocieties.org/publications/vzj/articles/17/1/170168</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1539-1663</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.400528 |