Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology
Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia (ALL). As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution, which significantly affects the absorption and reflection o...
Ausführliche Beschreibung
Autor*in: |
Xueqi Hu [verfasserIn] Jiahua Ou [verfasserIn] Mei Zhou [verfasserIn] Menghan Hu [verfasserIn] Li Sun [verfasserIn] Song Qiu [verfasserIn] Qingli Li [verfasserIn] Junhao Chu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Innovative Optical Health Sciences - World Scientific Publishing, 2017, 13(2020), 2, Seite 2050005-1-2050005-13 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2020 ; number:2 ; pages:2050005-1-2050005-13 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1142/S1793545820500054 |
---|
Katalog-ID: |
DOAJ003138666 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ003138666 | ||
003 | DE-627 | ||
005 | 20230502232540.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1142/S1793545820500054 |2 doi | |
035 | |a (DE-627)DOAJ003138666 | ||
035 | |a (DE-599)DOAJf76edc2ba1ee4085aac6b63d168f64ac | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC350-467 | |
100 | 0 | |a Xueqi Hu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia (ALL). As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution, which significantly affects the absorption and reflection of light, the spectral feature is proved to be important for leukocytes classification and identification. This paper proposes an accurate identification method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging (HSI) technology which combines the spectral information. The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm. Then, the spectral features are extracted and combined with the spatial features. Based on this, the support vector machine (SVM) is applied for classification of five types of leukocytes and abnormal leukocytes. Compared with different classification methods, the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes, improving the accuracy in the classification and identification of leukocytes. This paper only selects one subtype of ALL for test, and the proposed method can be applied for detection of other leukemia in the future. | ||
650 | 4 | |a leukocyte | |
650 | 4 | |a microscopic hyperspectral imaging | |
650 | 4 | |a nucleus segmentation | |
650 | 4 | |a acute lymphoblastic leukemia | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Optics. Light | |
700 | 0 | |a Jiahua Ou |e verfasserin |4 aut | |
700 | 0 | |a Mei Zhou |e verfasserin |4 aut | |
700 | 0 | |a Menghan Hu |e verfasserin |4 aut | |
700 | 0 | |a Li Sun |e verfasserin |4 aut | |
700 | 0 | |a Song Qiu |e verfasserin |4 aut | |
700 | 0 | |a Qingli Li |e verfasserin |4 aut | |
700 | 0 | |a Junhao Chu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Innovative Optical Health Sciences |d World Scientific Publishing, 2017 |g 13(2020), 2, Seite 2050005-1-2050005-13 |w (DE-627)60940315X |w (DE-600)2515441-2 |x 17937205 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2020 |g number:2 |g pages:2050005-1-2050005-13 |
856 | 4 | 0 | |u https://doi.org/10.1142/S1793545820500054 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f76edc2ba1ee4085aac6b63d168f64ac |z kostenfrei |
856 | 4 | 0 | |u http://www.worldscientific.com/doi/pdf/10.1142/S1793545820500054 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1793-5458 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1793-7205 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2020 |e 2 |h 2050005-1-2050005-13 |
author_variant |
x h xh j o jo m z mz m h mh l s ls s q sq q l ql j c jc |
---|---|
matchkey_str |
article:17937205:2020----::ptasetaietfctooanraluoyebsdnirsoihpr |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QC |
publishDate |
2020 |
allfields |
10.1142/S1793545820500054 doi (DE-627)DOAJ003138666 (DE-599)DOAJf76edc2ba1ee4085aac6b63d168f64ac DE-627 ger DE-627 rakwb eng QC350-467 Xueqi Hu verfasserin aut Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia (ALL). As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution, which significantly affects the absorption and reflection of light, the spectral feature is proved to be important for leukocytes classification and identification. This paper proposes an accurate identification method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging (HSI) technology which combines the spectral information. The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm. Then, the spectral features are extracted and combined with the spatial features. Based on this, the support vector machine (SVM) is applied for classification of five types of leukocytes and abnormal leukocytes. Compared with different classification methods, the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes, improving the accuracy in the classification and identification of leukocytes. This paper only selects one subtype of ALL for test, and the proposed method can be applied for detection of other leukemia in the future. leukocyte microscopic hyperspectral imaging nucleus segmentation acute lymphoblastic leukemia Technology T Optics. Light Jiahua Ou verfasserin aut Mei Zhou verfasserin aut Menghan Hu verfasserin aut Li Sun verfasserin aut Song Qiu verfasserin aut Qingli Li verfasserin aut Junhao Chu verfasserin aut In Journal of Innovative Optical Health Sciences World Scientific Publishing, 2017 13(2020), 2, Seite 2050005-1-2050005-13 (DE-627)60940315X (DE-600)2515441-2 17937205 nnns volume:13 year:2020 number:2 pages:2050005-1-2050005-13 https://doi.org/10.1142/S1793545820500054 kostenfrei https://doaj.org/article/f76edc2ba1ee4085aac6b63d168f64ac kostenfrei http://www.worldscientific.com/doi/pdf/10.1142/S1793545820500054 kostenfrei https://doaj.org/toc/1793-5458 Journal toc kostenfrei https://doaj.org/toc/1793-7205 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 2 2050005-1-2050005-13 |
spelling |
10.1142/S1793545820500054 doi (DE-627)DOAJ003138666 (DE-599)DOAJf76edc2ba1ee4085aac6b63d168f64ac DE-627 ger DE-627 rakwb eng QC350-467 Xueqi Hu verfasserin aut Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia (ALL). As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution, which significantly affects the absorption and reflection of light, the spectral feature is proved to be important for leukocytes classification and identification. This paper proposes an accurate identification method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging (HSI) technology which combines the spectral information. The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm. Then, the spectral features are extracted and combined with the spatial features. Based on this, the support vector machine (SVM) is applied for classification of five types of leukocytes and abnormal leukocytes. Compared with different classification methods, the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes, improving the accuracy in the classification and identification of leukocytes. This paper only selects one subtype of ALL for test, and the proposed method can be applied for detection of other leukemia in the future. leukocyte microscopic hyperspectral imaging nucleus segmentation acute lymphoblastic leukemia Technology T Optics. Light Jiahua Ou verfasserin aut Mei Zhou verfasserin aut Menghan Hu verfasserin aut Li Sun verfasserin aut Song Qiu verfasserin aut Qingli Li verfasserin aut Junhao Chu verfasserin aut In Journal of Innovative Optical Health Sciences World Scientific Publishing, 2017 13(2020), 2, Seite 2050005-1-2050005-13 (DE-627)60940315X (DE-600)2515441-2 17937205 nnns volume:13 year:2020 number:2 pages:2050005-1-2050005-13 https://doi.org/10.1142/S1793545820500054 kostenfrei https://doaj.org/article/f76edc2ba1ee4085aac6b63d168f64ac kostenfrei http://www.worldscientific.com/doi/pdf/10.1142/S1793545820500054 kostenfrei https://doaj.org/toc/1793-5458 Journal toc kostenfrei https://doaj.org/toc/1793-7205 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 2 2050005-1-2050005-13 |
allfields_unstemmed |
10.1142/S1793545820500054 doi (DE-627)DOAJ003138666 (DE-599)DOAJf76edc2ba1ee4085aac6b63d168f64ac DE-627 ger DE-627 rakwb eng QC350-467 Xueqi Hu verfasserin aut Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia (ALL). As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution, which significantly affects the absorption and reflection of light, the spectral feature is proved to be important for leukocytes classification and identification. This paper proposes an accurate identification method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging (HSI) technology which combines the spectral information. The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm. Then, the spectral features are extracted and combined with the spatial features. Based on this, the support vector machine (SVM) is applied for classification of five types of leukocytes and abnormal leukocytes. Compared with different classification methods, the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes, improving the accuracy in the classification and identification of leukocytes. This paper only selects one subtype of ALL for test, and the proposed method can be applied for detection of other leukemia in the future. leukocyte microscopic hyperspectral imaging nucleus segmentation acute lymphoblastic leukemia Technology T Optics. Light Jiahua Ou verfasserin aut Mei Zhou verfasserin aut Menghan Hu verfasserin aut Li Sun verfasserin aut Song Qiu verfasserin aut Qingli Li verfasserin aut Junhao Chu verfasserin aut In Journal of Innovative Optical Health Sciences World Scientific Publishing, 2017 13(2020), 2, Seite 2050005-1-2050005-13 (DE-627)60940315X (DE-600)2515441-2 17937205 nnns volume:13 year:2020 number:2 pages:2050005-1-2050005-13 https://doi.org/10.1142/S1793545820500054 kostenfrei https://doaj.org/article/f76edc2ba1ee4085aac6b63d168f64ac kostenfrei http://www.worldscientific.com/doi/pdf/10.1142/S1793545820500054 kostenfrei https://doaj.org/toc/1793-5458 Journal toc kostenfrei https://doaj.org/toc/1793-7205 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 2 2050005-1-2050005-13 |
allfieldsGer |
10.1142/S1793545820500054 doi (DE-627)DOAJ003138666 (DE-599)DOAJf76edc2ba1ee4085aac6b63d168f64ac DE-627 ger DE-627 rakwb eng QC350-467 Xueqi Hu verfasserin aut Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia (ALL). As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution, which significantly affects the absorption and reflection of light, the spectral feature is proved to be important for leukocytes classification and identification. This paper proposes an accurate identification method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging (HSI) technology which combines the spectral information. The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm. Then, the spectral features are extracted and combined with the spatial features. Based on this, the support vector machine (SVM) is applied for classification of five types of leukocytes and abnormal leukocytes. Compared with different classification methods, the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes, improving the accuracy in the classification and identification of leukocytes. This paper only selects one subtype of ALL for test, and the proposed method can be applied for detection of other leukemia in the future. leukocyte microscopic hyperspectral imaging nucleus segmentation acute lymphoblastic leukemia Technology T Optics. Light Jiahua Ou verfasserin aut Mei Zhou verfasserin aut Menghan Hu verfasserin aut Li Sun verfasserin aut Song Qiu verfasserin aut Qingli Li verfasserin aut Junhao Chu verfasserin aut In Journal of Innovative Optical Health Sciences World Scientific Publishing, 2017 13(2020), 2, Seite 2050005-1-2050005-13 (DE-627)60940315X (DE-600)2515441-2 17937205 nnns volume:13 year:2020 number:2 pages:2050005-1-2050005-13 https://doi.org/10.1142/S1793545820500054 kostenfrei https://doaj.org/article/f76edc2ba1ee4085aac6b63d168f64ac kostenfrei http://www.worldscientific.com/doi/pdf/10.1142/S1793545820500054 kostenfrei https://doaj.org/toc/1793-5458 Journal toc kostenfrei https://doaj.org/toc/1793-7205 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 2 2050005-1-2050005-13 |
allfieldsSound |
10.1142/S1793545820500054 doi (DE-627)DOAJ003138666 (DE-599)DOAJf76edc2ba1ee4085aac6b63d168f64ac DE-627 ger DE-627 rakwb eng QC350-467 Xueqi Hu verfasserin aut Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia (ALL). As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution, which significantly affects the absorption and reflection of light, the spectral feature is proved to be important for leukocytes classification and identification. This paper proposes an accurate identification method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging (HSI) technology which combines the spectral information. The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm. Then, the spectral features are extracted and combined with the spatial features. Based on this, the support vector machine (SVM) is applied for classification of five types of leukocytes and abnormal leukocytes. Compared with different classification methods, the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes, improving the accuracy in the classification and identification of leukocytes. This paper only selects one subtype of ALL for test, and the proposed method can be applied for detection of other leukemia in the future. leukocyte microscopic hyperspectral imaging nucleus segmentation acute lymphoblastic leukemia Technology T Optics. Light Jiahua Ou verfasserin aut Mei Zhou verfasserin aut Menghan Hu verfasserin aut Li Sun verfasserin aut Song Qiu verfasserin aut Qingli Li verfasserin aut Junhao Chu verfasserin aut In Journal of Innovative Optical Health Sciences World Scientific Publishing, 2017 13(2020), 2, Seite 2050005-1-2050005-13 (DE-627)60940315X (DE-600)2515441-2 17937205 nnns volume:13 year:2020 number:2 pages:2050005-1-2050005-13 https://doi.org/10.1142/S1793545820500054 kostenfrei https://doaj.org/article/f76edc2ba1ee4085aac6b63d168f64ac kostenfrei http://www.worldscientific.com/doi/pdf/10.1142/S1793545820500054 kostenfrei https://doaj.org/toc/1793-5458 Journal toc kostenfrei https://doaj.org/toc/1793-7205 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 2 2050005-1-2050005-13 |
language |
English |
source |
In Journal of Innovative Optical Health Sciences 13(2020), 2, Seite 2050005-1-2050005-13 volume:13 year:2020 number:2 pages:2050005-1-2050005-13 |
sourceStr |
In Journal of Innovative Optical Health Sciences 13(2020), 2, Seite 2050005-1-2050005-13 volume:13 year:2020 number:2 pages:2050005-1-2050005-13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
leukocyte microscopic hyperspectral imaging nucleus segmentation acute lymphoblastic leukemia Technology T Optics. Light |
isfreeaccess_bool |
true |
container_title |
Journal of Innovative Optical Health Sciences |
authorswithroles_txt_mv |
Xueqi Hu @@aut@@ Jiahua Ou @@aut@@ Mei Zhou @@aut@@ Menghan Hu @@aut@@ Li Sun @@aut@@ Song Qiu @@aut@@ Qingli Li @@aut@@ Junhao Chu @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
60940315X |
id |
DOAJ003138666 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003138666</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502232540.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/S1793545820500054</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003138666</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf76edc2ba1ee4085aac6b63d168f64ac</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xueqi Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia (ALL). As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution, which significantly affects the absorption and reflection of light, the spectral feature is proved to be important for leukocytes classification and identification. This paper proposes an accurate identification method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging (HSI) technology which combines the spectral information. The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm. Then, the spectral features are extracted and combined with the spatial features. Based on this, the support vector machine (SVM) is applied for classification of five types of leukocytes and abnormal leukocytes. Compared with different classification methods, the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes, improving the accuracy in the classification and identification of leukocytes. This paper only selects one subtype of ALL for test, and the proposed method can be applied for detection of other leukemia in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">leukocyte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microscopic hyperspectral imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nucleus segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acute lymphoblastic leukemia</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiahua Ou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mei Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Menghan Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Song Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingli Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junhao Chu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Innovative Optical Health Sciences</subfield><subfield code="d">World Scientific Publishing, 2017</subfield><subfield code="g">13(2020), 2, Seite 2050005-1-2050005-13</subfield><subfield code="w">(DE-627)60940315X</subfield><subfield code="w">(DE-600)2515441-2</subfield><subfield code="x">17937205</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:2050005-1-2050005-13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1142/S1793545820500054</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f76edc2ba1ee4085aac6b63d168f64ac</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/doi/pdf/10.1142/S1793545820500054</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1793-5458</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1793-7205</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="h">2050005-1-2050005-13</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Xueqi Hu |
spellingShingle |
Xueqi Hu misc QC350-467 misc leukocyte misc microscopic hyperspectral imaging misc nucleus segmentation misc acute lymphoblastic leukemia misc Technology misc T misc Optics. Light Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology |
authorStr |
Xueqi Hu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)60940315X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC350-467 |
illustrated |
Not Illustrated |
issn |
17937205 |
topic_title |
QC350-467 Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology leukocyte microscopic hyperspectral imaging nucleus segmentation acute lymphoblastic leukemia |
topic |
misc QC350-467 misc leukocyte misc microscopic hyperspectral imaging misc nucleus segmentation misc acute lymphoblastic leukemia misc Technology misc T misc Optics. Light |
topic_unstemmed |
misc QC350-467 misc leukocyte misc microscopic hyperspectral imaging misc nucleus segmentation misc acute lymphoblastic leukemia misc Technology misc T misc Optics. Light |
topic_browse |
misc QC350-467 misc leukocyte misc microscopic hyperspectral imaging misc nucleus segmentation misc acute lymphoblastic leukemia misc Technology misc T misc Optics. Light |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Innovative Optical Health Sciences |
hierarchy_parent_id |
60940315X |
hierarchy_top_title |
Journal of Innovative Optical Health Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)60940315X (DE-600)2515441-2 |
title |
Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology |
ctrlnum |
(DE-627)DOAJ003138666 (DE-599)DOAJf76edc2ba1ee4085aac6b63d168f64ac |
title_full |
Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology |
author_sort |
Xueqi Hu |
journal |
Journal of Innovative Optical Health Sciences |
journalStr |
Journal of Innovative Optical Health Sciences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
2050005 |
author_browse |
Xueqi Hu Jiahua Ou Mei Zhou Menghan Hu Li Sun Song Qiu Qingli Li Junhao Chu |
container_volume |
13 |
class |
QC350-467 |
format_se |
Elektronische Aufsätze |
author-letter |
Xueqi Hu |
doi_str_mv |
10.1142/S1793545820500054 |
author2-role |
verfasserin |
title_sort |
spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology |
callnumber |
QC350-467 |
title_auth |
Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology |
abstract |
Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia (ALL). As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution, which significantly affects the absorption and reflection of light, the spectral feature is proved to be important for leukocytes classification and identification. This paper proposes an accurate identification method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging (HSI) technology which combines the spectral information. The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm. Then, the spectral features are extracted and combined with the spatial features. Based on this, the support vector machine (SVM) is applied for classification of five types of leukocytes and abnormal leukocytes. Compared with different classification methods, the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes, improving the accuracy in the classification and identification of leukocytes. This paper only selects one subtype of ALL for test, and the proposed method can be applied for detection of other leukemia in the future. |
abstractGer |
Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia (ALL). As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution, which significantly affects the absorption and reflection of light, the spectral feature is proved to be important for leukocytes classification and identification. This paper proposes an accurate identification method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging (HSI) technology which combines the spectral information. The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm. Then, the spectral features are extracted and combined with the spatial features. Based on this, the support vector machine (SVM) is applied for classification of five types of leukocytes and abnormal leukocytes. Compared with different classification methods, the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes, improving the accuracy in the classification and identification of leukocytes. This paper only selects one subtype of ALL for test, and the proposed method can be applied for detection of other leukemia in the future. |
abstract_unstemmed |
Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia (ALL). As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution, which significantly affects the absorption and reflection of light, the spectral feature is proved to be important for leukocytes classification and identification. This paper proposes an accurate identification method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging (HSI) technology which combines the spectral information. The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm. Then, the spectral features are extracted and combined with the spatial features. Based on this, the support vector machine (SVM) is applied for classification of five types of leukocytes and abnormal leukocytes. Compared with different classification methods, the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes, improving the accuracy in the classification and identification of leukocytes. This paper only selects one subtype of ALL for test, and the proposed method can be applied for detection of other leukemia in the future. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology |
url |
https://doi.org/10.1142/S1793545820500054 https://doaj.org/article/f76edc2ba1ee4085aac6b63d168f64ac http://www.worldscientific.com/doi/pdf/10.1142/S1793545820500054 https://doaj.org/toc/1793-5458 https://doaj.org/toc/1793-7205 |
remote_bool |
true |
author2 |
Jiahua Ou Mei Zhou Menghan Hu Li Sun Song Qiu Qingli Li Junhao Chu |
author2Str |
Jiahua Ou Mei Zhou Menghan Hu Li Sun Song Qiu Qingli Li Junhao Chu |
ppnlink |
60940315X |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1142/S1793545820500054 |
callnumber-a |
QC350-467 |
up_date |
2024-07-03T16:12:25.909Z |
_version_ |
1803574990247821312 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003138666</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502232540.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/S1793545820500054</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003138666</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf76edc2ba1ee4085aac6b63d168f64ac</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xueqi Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia (ALL). As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution, which significantly affects the absorption and reflection of light, the spectral feature is proved to be important for leukocytes classification and identification. This paper proposes an accurate identification method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging (HSI) technology which combines the spectral information. The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm. Then, the spectral features are extracted and combined with the spatial features. Based on this, the support vector machine (SVM) is applied for classification of five types of leukocytes and abnormal leukocytes. Compared with different classification methods, the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes, improving the accuracy in the classification and identification of leukocytes. This paper only selects one subtype of ALL for test, and the proposed method can be applied for detection of other leukemia in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">leukocyte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microscopic hyperspectral imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nucleus segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acute lymphoblastic leukemia</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiahua Ou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mei Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Menghan Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Song Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingli Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junhao Chu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Innovative Optical Health Sciences</subfield><subfield code="d">World Scientific Publishing, 2017</subfield><subfield code="g">13(2020), 2, Seite 2050005-1-2050005-13</subfield><subfield code="w">(DE-627)60940315X</subfield><subfield code="w">(DE-600)2515441-2</subfield><subfield code="x">17937205</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:2050005-1-2050005-13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1142/S1793545820500054</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f76edc2ba1ee4085aac6b63d168f64ac</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/doi/pdf/10.1142/S1793545820500054</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1793-5458</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1793-7205</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="h">2050005-1-2050005-13</subfield></datafield></record></collection>
|
score |
7.399584 |