Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module
Nominal operating cell temperature (NOCT) was commonly used to evaluate photovoltaic (PV) module temperature and this term is provided by the manufacturer but in case of photovoltaic thermal module, the NOCT was not fixed and varied with the circulating fluid mass flow rate and its temperature. In t...
Ausführliche Beschreibung
Autor*in: |
Vat Sun [verfasserIn] Attakorn Asanakham [verfasserIn] Thoranis Deethayat [verfasserIn] Tanongkiat Kiatsiriroat [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Case Studies in Thermal Engineering - Elsevier, 2015, 28(2021), Seite 101361- |
---|---|
Übergeordnetes Werk: |
volume:28 ; year:2021 ; pages:101361- |
Links: |
---|
DOI / URN: |
10.1016/j.csite.2021.101361 |
---|
Katalog-ID: |
DOAJ003224392 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ003224392 | ||
003 | DE-627 | ||
005 | 20230309173742.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.csite.2021.101361 |2 doi | |
035 | |a (DE-627)DOAJ003224392 | ||
035 | |a (DE-599)DOAJ94d61a630aea4c3993a1d558fc3d75e8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Vat Sun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Nominal operating cell temperature (NOCT) was commonly used to evaluate photovoltaic (PV) module temperature and this term is provided by the manufacturer but in case of photovoltaic thermal module, the NOCT was not fixed and varied with the circulating fluid mass flow rate and its temperature. In this study, a novel approach on NOCT evaluation of glazed photovoltaic thermal (PVTg) module for combined heat and power generation was presented by modifying the method of solar collector testing for water heating. The thermal characteristics in terms of optical and heat loss performances and finally the NOCT at various water flow rates and inlet temperatures could be evaluated. Experimental tests were performed with a PVTg module under Chiang Mai climate, and it could be founded that the calculated module temperature, the outlet hot water temperature and the generated electrical power agreed well with the experimental results. Monthly performance of this module was also evaluated and compared with unglazed PVT and conventional PV modules each having the same solar photovoltaic cell type. The average generated electrical outputs were 28.07, 31.89, and 30.38 kWh/month, respectively, while the glazed and the unglazed PVT modules could generate average thermal energy of 119.19 and 101.40 kWh/month, respectively. | ||
650 | 4 | |a Glazed PVT module | |
650 | 4 | |a Performance | |
650 | 4 | |a Nominal operating cell temperature | |
650 | 4 | |a Combined heat and power | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Attakorn Asanakham |e verfasserin |4 aut | |
700 | 0 | |a Thoranis Deethayat |e verfasserin |4 aut | |
700 | 0 | |a Tanongkiat Kiatsiriroat |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Case Studies in Thermal Engineering |d Elsevier, 2015 |g 28(2021), Seite 101361- |w (DE-627)76809299X |w (DE-600)2732684-6 |x 2214157X |7 nnns |
773 | 1 | 8 | |g volume:28 |g year:2021 |g pages:101361- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.csite.2021.101361 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/94d61a630aea4c3993a1d558fc3d75e8 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2214157X21005244 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2214-157X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 28 |j 2021 |h 101361- |
author_variant |
v s vs a a aa t d td t k tk |
---|---|
matchkey_str |
article:2214157X:2021----::vlainfoiaoeaigeleprtrncogaepoo |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.1016/j.csite.2021.101361 doi (DE-627)DOAJ003224392 (DE-599)DOAJ94d61a630aea4c3993a1d558fc3d75e8 DE-627 ger DE-627 rakwb eng TA1-2040 Vat Sun verfasserin aut Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nominal operating cell temperature (NOCT) was commonly used to evaluate photovoltaic (PV) module temperature and this term is provided by the manufacturer but in case of photovoltaic thermal module, the NOCT was not fixed and varied with the circulating fluid mass flow rate and its temperature. In this study, a novel approach on NOCT evaluation of glazed photovoltaic thermal (PVTg) module for combined heat and power generation was presented by modifying the method of solar collector testing for water heating. The thermal characteristics in terms of optical and heat loss performances and finally the NOCT at various water flow rates and inlet temperatures could be evaluated. Experimental tests were performed with a PVTg module under Chiang Mai climate, and it could be founded that the calculated module temperature, the outlet hot water temperature and the generated electrical power agreed well with the experimental results. Monthly performance of this module was also evaluated and compared with unglazed PVT and conventional PV modules each having the same solar photovoltaic cell type. The average generated electrical outputs were 28.07, 31.89, and 30.38 kWh/month, respectively, while the glazed and the unglazed PVT modules could generate average thermal energy of 119.19 and 101.40 kWh/month, respectively. Glazed PVT module Performance Nominal operating cell temperature Combined heat and power Engineering (General). Civil engineering (General) Attakorn Asanakham verfasserin aut Thoranis Deethayat verfasserin aut Tanongkiat Kiatsiriroat verfasserin aut In Case Studies in Thermal Engineering Elsevier, 2015 28(2021), Seite 101361- (DE-627)76809299X (DE-600)2732684-6 2214157X nnns volume:28 year:2021 pages:101361- https://doi.org/10.1016/j.csite.2021.101361 kostenfrei https://doaj.org/article/94d61a630aea4c3993a1d558fc3d75e8 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214157X21005244 kostenfrei https://doaj.org/toc/2214-157X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 28 2021 101361- |
spelling |
10.1016/j.csite.2021.101361 doi (DE-627)DOAJ003224392 (DE-599)DOAJ94d61a630aea4c3993a1d558fc3d75e8 DE-627 ger DE-627 rakwb eng TA1-2040 Vat Sun verfasserin aut Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nominal operating cell temperature (NOCT) was commonly used to evaluate photovoltaic (PV) module temperature and this term is provided by the manufacturer but in case of photovoltaic thermal module, the NOCT was not fixed and varied with the circulating fluid mass flow rate and its temperature. In this study, a novel approach on NOCT evaluation of glazed photovoltaic thermal (PVTg) module for combined heat and power generation was presented by modifying the method of solar collector testing for water heating. The thermal characteristics in terms of optical and heat loss performances and finally the NOCT at various water flow rates and inlet temperatures could be evaluated. Experimental tests were performed with a PVTg module under Chiang Mai climate, and it could be founded that the calculated module temperature, the outlet hot water temperature and the generated electrical power agreed well with the experimental results. Monthly performance of this module was also evaluated and compared with unglazed PVT and conventional PV modules each having the same solar photovoltaic cell type. The average generated electrical outputs were 28.07, 31.89, and 30.38 kWh/month, respectively, while the glazed and the unglazed PVT modules could generate average thermal energy of 119.19 and 101.40 kWh/month, respectively. Glazed PVT module Performance Nominal operating cell temperature Combined heat and power Engineering (General). Civil engineering (General) Attakorn Asanakham verfasserin aut Thoranis Deethayat verfasserin aut Tanongkiat Kiatsiriroat verfasserin aut In Case Studies in Thermal Engineering Elsevier, 2015 28(2021), Seite 101361- (DE-627)76809299X (DE-600)2732684-6 2214157X nnns volume:28 year:2021 pages:101361- https://doi.org/10.1016/j.csite.2021.101361 kostenfrei https://doaj.org/article/94d61a630aea4c3993a1d558fc3d75e8 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214157X21005244 kostenfrei https://doaj.org/toc/2214-157X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 28 2021 101361- |
allfields_unstemmed |
10.1016/j.csite.2021.101361 doi (DE-627)DOAJ003224392 (DE-599)DOAJ94d61a630aea4c3993a1d558fc3d75e8 DE-627 ger DE-627 rakwb eng TA1-2040 Vat Sun verfasserin aut Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nominal operating cell temperature (NOCT) was commonly used to evaluate photovoltaic (PV) module temperature and this term is provided by the manufacturer but in case of photovoltaic thermal module, the NOCT was not fixed and varied with the circulating fluid mass flow rate and its temperature. In this study, a novel approach on NOCT evaluation of glazed photovoltaic thermal (PVTg) module for combined heat and power generation was presented by modifying the method of solar collector testing for water heating. The thermal characteristics in terms of optical and heat loss performances and finally the NOCT at various water flow rates and inlet temperatures could be evaluated. Experimental tests were performed with a PVTg module under Chiang Mai climate, and it could be founded that the calculated module temperature, the outlet hot water temperature and the generated electrical power agreed well with the experimental results. Monthly performance of this module was also evaluated and compared with unglazed PVT and conventional PV modules each having the same solar photovoltaic cell type. The average generated electrical outputs were 28.07, 31.89, and 30.38 kWh/month, respectively, while the glazed and the unglazed PVT modules could generate average thermal energy of 119.19 and 101.40 kWh/month, respectively. Glazed PVT module Performance Nominal operating cell temperature Combined heat and power Engineering (General). Civil engineering (General) Attakorn Asanakham verfasserin aut Thoranis Deethayat verfasserin aut Tanongkiat Kiatsiriroat verfasserin aut In Case Studies in Thermal Engineering Elsevier, 2015 28(2021), Seite 101361- (DE-627)76809299X (DE-600)2732684-6 2214157X nnns volume:28 year:2021 pages:101361- https://doi.org/10.1016/j.csite.2021.101361 kostenfrei https://doaj.org/article/94d61a630aea4c3993a1d558fc3d75e8 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214157X21005244 kostenfrei https://doaj.org/toc/2214-157X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 28 2021 101361- |
allfieldsGer |
10.1016/j.csite.2021.101361 doi (DE-627)DOAJ003224392 (DE-599)DOAJ94d61a630aea4c3993a1d558fc3d75e8 DE-627 ger DE-627 rakwb eng TA1-2040 Vat Sun verfasserin aut Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nominal operating cell temperature (NOCT) was commonly used to evaluate photovoltaic (PV) module temperature and this term is provided by the manufacturer but in case of photovoltaic thermal module, the NOCT was not fixed and varied with the circulating fluid mass flow rate and its temperature. In this study, a novel approach on NOCT evaluation of glazed photovoltaic thermal (PVTg) module for combined heat and power generation was presented by modifying the method of solar collector testing for water heating. The thermal characteristics in terms of optical and heat loss performances and finally the NOCT at various water flow rates and inlet temperatures could be evaluated. Experimental tests were performed with a PVTg module under Chiang Mai climate, and it could be founded that the calculated module temperature, the outlet hot water temperature and the generated electrical power agreed well with the experimental results. Monthly performance of this module was also evaluated and compared with unglazed PVT and conventional PV modules each having the same solar photovoltaic cell type. The average generated electrical outputs were 28.07, 31.89, and 30.38 kWh/month, respectively, while the glazed and the unglazed PVT modules could generate average thermal energy of 119.19 and 101.40 kWh/month, respectively. Glazed PVT module Performance Nominal operating cell temperature Combined heat and power Engineering (General). Civil engineering (General) Attakorn Asanakham verfasserin aut Thoranis Deethayat verfasserin aut Tanongkiat Kiatsiriroat verfasserin aut In Case Studies in Thermal Engineering Elsevier, 2015 28(2021), Seite 101361- (DE-627)76809299X (DE-600)2732684-6 2214157X nnns volume:28 year:2021 pages:101361- https://doi.org/10.1016/j.csite.2021.101361 kostenfrei https://doaj.org/article/94d61a630aea4c3993a1d558fc3d75e8 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214157X21005244 kostenfrei https://doaj.org/toc/2214-157X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 28 2021 101361- |
allfieldsSound |
10.1016/j.csite.2021.101361 doi (DE-627)DOAJ003224392 (DE-599)DOAJ94d61a630aea4c3993a1d558fc3d75e8 DE-627 ger DE-627 rakwb eng TA1-2040 Vat Sun verfasserin aut Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nominal operating cell temperature (NOCT) was commonly used to evaluate photovoltaic (PV) module temperature and this term is provided by the manufacturer but in case of photovoltaic thermal module, the NOCT was not fixed and varied with the circulating fluid mass flow rate and its temperature. In this study, a novel approach on NOCT evaluation of glazed photovoltaic thermal (PVTg) module for combined heat and power generation was presented by modifying the method of solar collector testing for water heating. The thermal characteristics in terms of optical and heat loss performances and finally the NOCT at various water flow rates and inlet temperatures could be evaluated. Experimental tests were performed with a PVTg module under Chiang Mai climate, and it could be founded that the calculated module temperature, the outlet hot water temperature and the generated electrical power agreed well with the experimental results. Monthly performance of this module was also evaluated and compared with unglazed PVT and conventional PV modules each having the same solar photovoltaic cell type. The average generated electrical outputs were 28.07, 31.89, and 30.38 kWh/month, respectively, while the glazed and the unglazed PVT modules could generate average thermal energy of 119.19 and 101.40 kWh/month, respectively. Glazed PVT module Performance Nominal operating cell temperature Combined heat and power Engineering (General). Civil engineering (General) Attakorn Asanakham verfasserin aut Thoranis Deethayat verfasserin aut Tanongkiat Kiatsiriroat verfasserin aut In Case Studies in Thermal Engineering Elsevier, 2015 28(2021), Seite 101361- (DE-627)76809299X (DE-600)2732684-6 2214157X nnns volume:28 year:2021 pages:101361- https://doi.org/10.1016/j.csite.2021.101361 kostenfrei https://doaj.org/article/94d61a630aea4c3993a1d558fc3d75e8 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214157X21005244 kostenfrei https://doaj.org/toc/2214-157X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 28 2021 101361- |
language |
English |
source |
In Case Studies in Thermal Engineering 28(2021), Seite 101361- volume:28 year:2021 pages:101361- |
sourceStr |
In Case Studies in Thermal Engineering 28(2021), Seite 101361- volume:28 year:2021 pages:101361- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Glazed PVT module Performance Nominal operating cell temperature Combined heat and power Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
Case Studies in Thermal Engineering |
authorswithroles_txt_mv |
Vat Sun @@aut@@ Attakorn Asanakham @@aut@@ Thoranis Deethayat @@aut@@ Tanongkiat Kiatsiriroat @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
76809299X |
id |
DOAJ003224392 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003224392</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309173742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.csite.2021.101361</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003224392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ94d61a630aea4c3993a1d558fc3d75e8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Vat Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nominal operating cell temperature (NOCT) was commonly used to evaluate photovoltaic (PV) module temperature and this term is provided by the manufacturer but in case of photovoltaic thermal module, the NOCT was not fixed and varied with the circulating fluid mass flow rate and its temperature. In this study, a novel approach on NOCT evaluation of glazed photovoltaic thermal (PVTg) module for combined heat and power generation was presented by modifying the method of solar collector testing for water heating. The thermal characteristics in terms of optical and heat loss performances and finally the NOCT at various water flow rates and inlet temperatures could be evaluated. Experimental tests were performed with a PVTg module under Chiang Mai climate, and it could be founded that the calculated module temperature, the outlet hot water temperature and the generated electrical power agreed well with the experimental results. Monthly performance of this module was also evaluated and compared with unglazed PVT and conventional PV modules each having the same solar photovoltaic cell type. The average generated electrical outputs were 28.07, 31.89, and 30.38 kWh/month, respectively, while the glazed and the unglazed PVT modules could generate average thermal energy of 119.19 and 101.40 kWh/month, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glazed PVT module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nominal operating cell temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combined heat and power</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Attakorn Asanakham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thoranis Deethayat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tanongkiat Kiatsiriroat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Case Studies in Thermal Engineering</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">28(2021), Seite 101361-</subfield><subfield code="w">(DE-627)76809299X</subfield><subfield code="w">(DE-600)2732684-6</subfield><subfield code="x">2214157X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:101361-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.csite.2021.101361</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/94d61a630aea4c3993a1d558fc3d75e8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2214157X21005244</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2214-157X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2021</subfield><subfield code="h">101361-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Vat Sun |
spellingShingle |
Vat Sun misc TA1-2040 misc Glazed PVT module misc Performance misc Nominal operating cell temperature misc Combined heat and power misc Engineering (General). Civil engineering (General) Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module |
authorStr |
Vat Sun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)76809299X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
2214157X |
topic_title |
TA1-2040 Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module Glazed PVT module Performance Nominal operating cell temperature Combined heat and power |
topic |
misc TA1-2040 misc Glazed PVT module misc Performance misc Nominal operating cell temperature misc Combined heat and power misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc Glazed PVT module misc Performance misc Nominal operating cell temperature misc Combined heat and power misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc Glazed PVT module misc Performance misc Nominal operating cell temperature misc Combined heat and power misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Case Studies in Thermal Engineering |
hierarchy_parent_id |
76809299X |
hierarchy_top_title |
Case Studies in Thermal Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)76809299X (DE-600)2732684-6 |
title |
Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module |
ctrlnum |
(DE-627)DOAJ003224392 (DE-599)DOAJ94d61a630aea4c3993a1d558fc3d75e8 |
title_full |
Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module |
author_sort |
Vat Sun |
journal |
Case Studies in Thermal Engineering |
journalStr |
Case Studies in Thermal Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
101361 |
author_browse |
Vat Sun Attakorn Asanakham Thoranis Deethayat Tanongkiat Kiatsiriroat |
container_volume |
28 |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Vat Sun |
doi_str_mv |
10.1016/j.csite.2021.101361 |
author2-role |
verfasserin |
title_sort |
evaluation of nominal operating cell temperature (noct) of glazed photovoltaic thermal module |
callnumber |
TA1-2040 |
title_auth |
Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module |
abstract |
Nominal operating cell temperature (NOCT) was commonly used to evaluate photovoltaic (PV) module temperature and this term is provided by the manufacturer but in case of photovoltaic thermal module, the NOCT was not fixed and varied with the circulating fluid mass flow rate and its temperature. In this study, a novel approach on NOCT evaluation of glazed photovoltaic thermal (PVTg) module for combined heat and power generation was presented by modifying the method of solar collector testing for water heating. The thermal characteristics in terms of optical and heat loss performances and finally the NOCT at various water flow rates and inlet temperatures could be evaluated. Experimental tests were performed with a PVTg module under Chiang Mai climate, and it could be founded that the calculated module temperature, the outlet hot water temperature and the generated electrical power agreed well with the experimental results. Monthly performance of this module was also evaluated and compared with unglazed PVT and conventional PV modules each having the same solar photovoltaic cell type. The average generated electrical outputs were 28.07, 31.89, and 30.38 kWh/month, respectively, while the glazed and the unglazed PVT modules could generate average thermal energy of 119.19 and 101.40 kWh/month, respectively. |
abstractGer |
Nominal operating cell temperature (NOCT) was commonly used to evaluate photovoltaic (PV) module temperature and this term is provided by the manufacturer but in case of photovoltaic thermal module, the NOCT was not fixed and varied with the circulating fluid mass flow rate and its temperature. In this study, a novel approach on NOCT evaluation of glazed photovoltaic thermal (PVTg) module for combined heat and power generation was presented by modifying the method of solar collector testing for water heating. The thermal characteristics in terms of optical and heat loss performances and finally the NOCT at various water flow rates and inlet temperatures could be evaluated. Experimental tests were performed with a PVTg module under Chiang Mai climate, and it could be founded that the calculated module temperature, the outlet hot water temperature and the generated electrical power agreed well with the experimental results. Monthly performance of this module was also evaluated and compared with unglazed PVT and conventional PV modules each having the same solar photovoltaic cell type. The average generated electrical outputs were 28.07, 31.89, and 30.38 kWh/month, respectively, while the glazed and the unglazed PVT modules could generate average thermal energy of 119.19 and 101.40 kWh/month, respectively. |
abstract_unstemmed |
Nominal operating cell temperature (NOCT) was commonly used to evaluate photovoltaic (PV) module temperature and this term is provided by the manufacturer but in case of photovoltaic thermal module, the NOCT was not fixed and varied with the circulating fluid mass flow rate and its temperature. In this study, a novel approach on NOCT evaluation of glazed photovoltaic thermal (PVTg) module for combined heat and power generation was presented by modifying the method of solar collector testing for water heating. The thermal characteristics in terms of optical and heat loss performances and finally the NOCT at various water flow rates and inlet temperatures could be evaluated. Experimental tests were performed with a PVTg module under Chiang Mai climate, and it could be founded that the calculated module temperature, the outlet hot water temperature and the generated electrical power agreed well with the experimental results. Monthly performance of this module was also evaluated and compared with unglazed PVT and conventional PV modules each having the same solar photovoltaic cell type. The average generated electrical outputs were 28.07, 31.89, and 30.38 kWh/month, respectively, while the glazed and the unglazed PVT modules could generate average thermal energy of 119.19 and 101.40 kWh/month, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module |
url |
https://doi.org/10.1016/j.csite.2021.101361 https://doaj.org/article/94d61a630aea4c3993a1d558fc3d75e8 http://www.sciencedirect.com/science/article/pii/S2214157X21005244 https://doaj.org/toc/2214-157X |
remote_bool |
true |
author2 |
Attakorn Asanakham Thoranis Deethayat Tanongkiat Kiatsiriroat |
author2Str |
Attakorn Asanakham Thoranis Deethayat Tanongkiat Kiatsiriroat |
ppnlink |
76809299X |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.csite.2021.101361 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T16:44:12.782Z |
_version_ |
1803576989746987008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003224392</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309173742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.csite.2021.101361</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003224392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ94d61a630aea4c3993a1d558fc3d75e8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Vat Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nominal operating cell temperature (NOCT) was commonly used to evaluate photovoltaic (PV) module temperature and this term is provided by the manufacturer but in case of photovoltaic thermal module, the NOCT was not fixed and varied with the circulating fluid mass flow rate and its temperature. In this study, a novel approach on NOCT evaluation of glazed photovoltaic thermal (PVTg) module for combined heat and power generation was presented by modifying the method of solar collector testing for water heating. The thermal characteristics in terms of optical and heat loss performances and finally the NOCT at various water flow rates and inlet temperatures could be evaluated. Experimental tests were performed with a PVTg module under Chiang Mai climate, and it could be founded that the calculated module temperature, the outlet hot water temperature and the generated electrical power agreed well with the experimental results. Monthly performance of this module was also evaluated and compared with unglazed PVT and conventional PV modules each having the same solar photovoltaic cell type. The average generated electrical outputs were 28.07, 31.89, and 30.38 kWh/month, respectively, while the glazed and the unglazed PVT modules could generate average thermal energy of 119.19 and 101.40 kWh/month, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glazed PVT module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nominal operating cell temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combined heat and power</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Attakorn Asanakham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thoranis Deethayat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tanongkiat Kiatsiriroat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Case Studies in Thermal Engineering</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">28(2021), Seite 101361-</subfield><subfield code="w">(DE-627)76809299X</subfield><subfield code="w">(DE-600)2732684-6</subfield><subfield code="x">2214157X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:101361-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.csite.2021.101361</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/94d61a630aea4c3993a1d558fc3d75e8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2214157X21005244</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2214-157X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2021</subfield><subfield code="h">101361-</subfield></datafield></record></collection>
|
score |
7.4021635 |