A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i<
Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study us...
Ausführliche Beschreibung
Autor*in: |
Hongsheng Xu [verfasserIn] Xinyu Wang [verfasserIn] Xiaomeng Zhang [verfasserIn] Jin Cheng [verfasserIn] Jixiang Zhang [verfasserIn] Min Chen [verfasserIn] Tianshu Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nanomaterials - MDPI AG, 2012, 11(2021), 12, p 3314 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:12, p 3314 |
Links: |
---|
DOI / URN: |
10.3390/nano11123314 |
---|
Katalog-ID: |
DOAJ003366464 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ003366464 | ||
003 | DE-627 | ||
005 | 20240414223307.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/nano11123314 |2 doi | |
035 | |a (DE-627)DOAJ003366464 | ||
035 | |a (DE-599)DOAJe25f0e96c2fc43418fe195c78f789640 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a Hongsheng Xu |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i< |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study used the nematode <i<Caenorhabditis elegans</i< (<i<C. elegans</i<), which has become a valuable animal model in nanotoxicological studies due to its multiple advantages, to undertake a bio-safety assessment of N-GQDs in the nervous system with the assistance of a deep learning model. The findings suggested that accumulated N-GQDs in the nematodes’ bodies damaged their normal behavior in a dose- and time-dependent manner, and the impairments of the nervous system were obviously severe when the exposure dosages were above 100 μg/mL. When assessing the morphological changes of neurons caused by N-GQDs, a quantitative image-based analysis based on a deep neural network algorithm (YOLACT) was used because traditional image-based analysis is labor-intensive and limited to qualitative evaluation. The quantitative results indicated that N-GQDs damaged dopaminergic and glutamatergic neurons, which are involved in the neurotoxic effects of N-GQDs in the nematode <i<C. elegans</i<. This study not only suggests a fast and economic <i<C. elegans</i< model to undertake the risk assessment of nanomaterials in the nervous system, but also provides a valuable deep learning approach to quantitatively track subtle morphological changes of neurons at an unbiased level in a nanotoxicological study using <i<C. elegans</i<. | ||
650 | 4 | |a nanotoxicity | |
650 | 4 | |a neurotoxicity | |
650 | 4 | |a neurobehavior | |
650 | 4 | |a machine learning | |
650 | 4 | |a phenotyping | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Xinyu Wang |e verfasserin |4 aut | |
700 | 0 | |a Xiaomeng Zhang |e verfasserin |4 aut | |
700 | 0 | |a Jin Cheng |e verfasserin |4 aut | |
700 | 0 | |a Jixiang Zhang |e verfasserin |4 aut | |
700 | 0 | |a Min Chen |e verfasserin |4 aut | |
700 | 0 | |a Tianshu Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nanomaterials |d MDPI AG, 2012 |g 11(2021), 12, p 3314 |w (DE-627)718627199 |w (DE-600)2662255-5 |x 20794991 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:12, p 3314 |
856 | 4 | 0 | |u https://doi.org/10.3390/nano11123314 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e25f0e96c2fc43418fe195c78f789640 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-4991/11/12/3314 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-4991 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 12, p 3314 |
author_variant |
h x hx x w xw x z xz j c jc j z jz m c mc t w tw |
---|---|
matchkey_str |
article:20794991:2021----::delannaayirvasirgnoegahnqatmosaaeernonm |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QD |
publishDate |
2021 |
allfields |
10.3390/nano11123314 doi (DE-627)DOAJ003366464 (DE-599)DOAJe25f0e96c2fc43418fe195c78f789640 DE-627 ger DE-627 rakwb eng QD1-999 Hongsheng Xu verfasserin aut A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i< 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study used the nematode <i<Caenorhabditis elegans</i< (<i<C. elegans</i<), which has become a valuable animal model in nanotoxicological studies due to its multiple advantages, to undertake a bio-safety assessment of N-GQDs in the nervous system with the assistance of a deep learning model. The findings suggested that accumulated N-GQDs in the nematodes’ bodies damaged their normal behavior in a dose- and time-dependent manner, and the impairments of the nervous system were obviously severe when the exposure dosages were above 100 μg/mL. When assessing the morphological changes of neurons caused by N-GQDs, a quantitative image-based analysis based on a deep neural network algorithm (YOLACT) was used because traditional image-based analysis is labor-intensive and limited to qualitative evaluation. The quantitative results indicated that N-GQDs damaged dopaminergic and glutamatergic neurons, which are involved in the neurotoxic effects of N-GQDs in the nematode <i<C. elegans</i<. This study not only suggests a fast and economic <i<C. elegans</i< model to undertake the risk assessment of nanomaterials in the nervous system, but also provides a valuable deep learning approach to quantitatively track subtle morphological changes of neurons at an unbiased level in a nanotoxicological study using <i<C. elegans</i<. nanotoxicity neurotoxicity neurobehavior machine learning phenotyping Chemistry Xinyu Wang verfasserin aut Xiaomeng Zhang verfasserin aut Jin Cheng verfasserin aut Jixiang Zhang verfasserin aut Min Chen verfasserin aut Tianshu Wu verfasserin aut In Nanomaterials MDPI AG, 2012 11(2021), 12, p 3314 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:11 year:2021 number:12, p 3314 https://doi.org/10.3390/nano11123314 kostenfrei https://doaj.org/article/e25f0e96c2fc43418fe195c78f789640 kostenfrei https://www.mdpi.com/2079-4991/11/12/3314 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 12, p 3314 |
spelling |
10.3390/nano11123314 doi (DE-627)DOAJ003366464 (DE-599)DOAJe25f0e96c2fc43418fe195c78f789640 DE-627 ger DE-627 rakwb eng QD1-999 Hongsheng Xu verfasserin aut A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i< 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study used the nematode <i<Caenorhabditis elegans</i< (<i<C. elegans</i<), which has become a valuable animal model in nanotoxicological studies due to its multiple advantages, to undertake a bio-safety assessment of N-GQDs in the nervous system with the assistance of a deep learning model. The findings suggested that accumulated N-GQDs in the nematodes’ bodies damaged their normal behavior in a dose- and time-dependent manner, and the impairments of the nervous system were obviously severe when the exposure dosages were above 100 μg/mL. When assessing the morphological changes of neurons caused by N-GQDs, a quantitative image-based analysis based on a deep neural network algorithm (YOLACT) was used because traditional image-based analysis is labor-intensive and limited to qualitative evaluation. The quantitative results indicated that N-GQDs damaged dopaminergic and glutamatergic neurons, which are involved in the neurotoxic effects of N-GQDs in the nematode <i<C. elegans</i<. This study not only suggests a fast and economic <i<C. elegans</i< model to undertake the risk assessment of nanomaterials in the nervous system, but also provides a valuable deep learning approach to quantitatively track subtle morphological changes of neurons at an unbiased level in a nanotoxicological study using <i<C. elegans</i<. nanotoxicity neurotoxicity neurobehavior machine learning phenotyping Chemistry Xinyu Wang verfasserin aut Xiaomeng Zhang verfasserin aut Jin Cheng verfasserin aut Jixiang Zhang verfasserin aut Min Chen verfasserin aut Tianshu Wu verfasserin aut In Nanomaterials MDPI AG, 2012 11(2021), 12, p 3314 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:11 year:2021 number:12, p 3314 https://doi.org/10.3390/nano11123314 kostenfrei https://doaj.org/article/e25f0e96c2fc43418fe195c78f789640 kostenfrei https://www.mdpi.com/2079-4991/11/12/3314 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 12, p 3314 |
allfields_unstemmed |
10.3390/nano11123314 doi (DE-627)DOAJ003366464 (DE-599)DOAJe25f0e96c2fc43418fe195c78f789640 DE-627 ger DE-627 rakwb eng QD1-999 Hongsheng Xu verfasserin aut A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i< 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study used the nematode <i<Caenorhabditis elegans</i< (<i<C. elegans</i<), which has become a valuable animal model in nanotoxicological studies due to its multiple advantages, to undertake a bio-safety assessment of N-GQDs in the nervous system with the assistance of a deep learning model. The findings suggested that accumulated N-GQDs in the nematodes’ bodies damaged their normal behavior in a dose- and time-dependent manner, and the impairments of the nervous system were obviously severe when the exposure dosages were above 100 μg/mL. When assessing the morphological changes of neurons caused by N-GQDs, a quantitative image-based analysis based on a deep neural network algorithm (YOLACT) was used because traditional image-based analysis is labor-intensive and limited to qualitative evaluation. The quantitative results indicated that N-GQDs damaged dopaminergic and glutamatergic neurons, which are involved in the neurotoxic effects of N-GQDs in the nematode <i<C. elegans</i<. This study not only suggests a fast and economic <i<C. elegans</i< model to undertake the risk assessment of nanomaterials in the nervous system, but also provides a valuable deep learning approach to quantitatively track subtle morphological changes of neurons at an unbiased level in a nanotoxicological study using <i<C. elegans</i<. nanotoxicity neurotoxicity neurobehavior machine learning phenotyping Chemistry Xinyu Wang verfasserin aut Xiaomeng Zhang verfasserin aut Jin Cheng verfasserin aut Jixiang Zhang verfasserin aut Min Chen verfasserin aut Tianshu Wu verfasserin aut In Nanomaterials MDPI AG, 2012 11(2021), 12, p 3314 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:11 year:2021 number:12, p 3314 https://doi.org/10.3390/nano11123314 kostenfrei https://doaj.org/article/e25f0e96c2fc43418fe195c78f789640 kostenfrei https://www.mdpi.com/2079-4991/11/12/3314 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 12, p 3314 |
allfieldsGer |
10.3390/nano11123314 doi (DE-627)DOAJ003366464 (DE-599)DOAJe25f0e96c2fc43418fe195c78f789640 DE-627 ger DE-627 rakwb eng QD1-999 Hongsheng Xu verfasserin aut A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i< 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study used the nematode <i<Caenorhabditis elegans</i< (<i<C. elegans</i<), which has become a valuable animal model in nanotoxicological studies due to its multiple advantages, to undertake a bio-safety assessment of N-GQDs in the nervous system with the assistance of a deep learning model. The findings suggested that accumulated N-GQDs in the nematodes’ bodies damaged their normal behavior in a dose- and time-dependent manner, and the impairments of the nervous system were obviously severe when the exposure dosages were above 100 μg/mL. When assessing the morphological changes of neurons caused by N-GQDs, a quantitative image-based analysis based on a deep neural network algorithm (YOLACT) was used because traditional image-based analysis is labor-intensive and limited to qualitative evaluation. The quantitative results indicated that N-GQDs damaged dopaminergic and glutamatergic neurons, which are involved in the neurotoxic effects of N-GQDs in the nematode <i<C. elegans</i<. This study not only suggests a fast and economic <i<C. elegans</i< model to undertake the risk assessment of nanomaterials in the nervous system, but also provides a valuable deep learning approach to quantitatively track subtle morphological changes of neurons at an unbiased level in a nanotoxicological study using <i<C. elegans</i<. nanotoxicity neurotoxicity neurobehavior machine learning phenotyping Chemistry Xinyu Wang verfasserin aut Xiaomeng Zhang verfasserin aut Jin Cheng verfasserin aut Jixiang Zhang verfasserin aut Min Chen verfasserin aut Tianshu Wu verfasserin aut In Nanomaterials MDPI AG, 2012 11(2021), 12, p 3314 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:11 year:2021 number:12, p 3314 https://doi.org/10.3390/nano11123314 kostenfrei https://doaj.org/article/e25f0e96c2fc43418fe195c78f789640 kostenfrei https://www.mdpi.com/2079-4991/11/12/3314 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 12, p 3314 |
allfieldsSound |
10.3390/nano11123314 doi (DE-627)DOAJ003366464 (DE-599)DOAJe25f0e96c2fc43418fe195c78f789640 DE-627 ger DE-627 rakwb eng QD1-999 Hongsheng Xu verfasserin aut A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i< 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study used the nematode <i<Caenorhabditis elegans</i< (<i<C. elegans</i<), which has become a valuable animal model in nanotoxicological studies due to its multiple advantages, to undertake a bio-safety assessment of N-GQDs in the nervous system with the assistance of a deep learning model. The findings suggested that accumulated N-GQDs in the nematodes’ bodies damaged their normal behavior in a dose- and time-dependent manner, and the impairments of the nervous system were obviously severe when the exposure dosages were above 100 μg/mL. When assessing the morphological changes of neurons caused by N-GQDs, a quantitative image-based analysis based on a deep neural network algorithm (YOLACT) was used because traditional image-based analysis is labor-intensive and limited to qualitative evaluation. The quantitative results indicated that N-GQDs damaged dopaminergic and glutamatergic neurons, which are involved in the neurotoxic effects of N-GQDs in the nematode <i<C. elegans</i<. This study not only suggests a fast and economic <i<C. elegans</i< model to undertake the risk assessment of nanomaterials in the nervous system, but also provides a valuable deep learning approach to quantitatively track subtle morphological changes of neurons at an unbiased level in a nanotoxicological study using <i<C. elegans</i<. nanotoxicity neurotoxicity neurobehavior machine learning phenotyping Chemistry Xinyu Wang verfasserin aut Xiaomeng Zhang verfasserin aut Jin Cheng verfasserin aut Jixiang Zhang verfasserin aut Min Chen verfasserin aut Tianshu Wu verfasserin aut In Nanomaterials MDPI AG, 2012 11(2021), 12, p 3314 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:11 year:2021 number:12, p 3314 https://doi.org/10.3390/nano11123314 kostenfrei https://doaj.org/article/e25f0e96c2fc43418fe195c78f789640 kostenfrei https://www.mdpi.com/2079-4991/11/12/3314 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 12, p 3314 |
language |
English |
source |
In Nanomaterials 11(2021), 12, p 3314 volume:11 year:2021 number:12, p 3314 |
sourceStr |
In Nanomaterials 11(2021), 12, p 3314 volume:11 year:2021 number:12, p 3314 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
nanotoxicity neurotoxicity neurobehavior machine learning phenotyping Chemistry |
isfreeaccess_bool |
true |
container_title |
Nanomaterials |
authorswithroles_txt_mv |
Hongsheng Xu @@aut@@ Xinyu Wang @@aut@@ Xiaomeng Zhang @@aut@@ Jin Cheng @@aut@@ Jixiang Zhang @@aut@@ Min Chen @@aut@@ Tianshu Wu @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
718627199 |
id |
DOAJ003366464 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003366464</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414223307.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano11123314</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003366464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe25f0e96c2fc43418fe195c78f789640</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hongsheng Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study used the nematode <i<Caenorhabditis elegans</i< (<i<C. elegans</i<), which has become a valuable animal model in nanotoxicological studies due to its multiple advantages, to undertake a bio-safety assessment of N-GQDs in the nervous system with the assistance of a deep learning model. The findings suggested that accumulated N-GQDs in the nematodes’ bodies damaged their normal behavior in a dose- and time-dependent manner, and the impairments of the nervous system were obviously severe when the exposure dosages were above 100 μg/mL. When assessing the morphological changes of neurons caused by N-GQDs, a quantitative image-based analysis based on a deep neural network algorithm (YOLACT) was used because traditional image-based analysis is labor-intensive and limited to qualitative evaluation. The quantitative results indicated that N-GQDs damaged dopaminergic and glutamatergic neurons, which are involved in the neurotoxic effects of N-GQDs in the nematode <i<C. elegans</i<. This study not only suggests a fast and economic <i<C. elegans</i< model to undertake the risk assessment of nanomaterials in the nervous system, but also provides a valuable deep learning approach to quantitatively track subtle morphological changes of neurons at an unbiased level in a nanotoxicological study using <i<C. elegans</i<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanotoxicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neurotoxicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neurobehavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phenotyping</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinyu Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaomeng Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jin Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jixiang Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianshu Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 12, p 3314</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12, p 3314</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano11123314</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e25f0e96c2fc43418fe195c78f789640</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/11/12/3314</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">12, p 3314</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Hongsheng Xu |
spellingShingle |
Hongsheng Xu misc QD1-999 misc nanotoxicity misc neurotoxicity misc neurobehavior misc machine learning misc phenotyping misc Chemistry A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i< |
authorStr |
Hongsheng Xu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627199 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
20794991 |
topic_title |
QD1-999 A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i< nanotoxicity neurotoxicity neurobehavior machine learning phenotyping |
topic |
misc QD1-999 misc nanotoxicity misc neurotoxicity misc neurobehavior misc machine learning misc phenotyping misc Chemistry |
topic_unstemmed |
misc QD1-999 misc nanotoxicity misc neurotoxicity misc neurobehavior misc machine learning misc phenotyping misc Chemistry |
topic_browse |
misc QD1-999 misc nanotoxicity misc neurotoxicity misc neurobehavior misc machine learning misc phenotyping misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanomaterials |
hierarchy_parent_id |
718627199 |
hierarchy_top_title |
Nanomaterials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627199 (DE-600)2662255-5 |
title |
A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i< |
ctrlnum |
(DE-627)DOAJ003366464 (DE-599)DOAJe25f0e96c2fc43418fe195c78f789640 |
title_full |
A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i< |
author_sort |
Hongsheng Xu |
journal |
Nanomaterials |
journalStr |
Nanomaterials |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Hongsheng Xu Xinyu Wang Xiaomeng Zhang Jin Cheng Jixiang Zhang Min Chen Tianshu Wu |
container_volume |
11 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Hongsheng Xu |
doi_str_mv |
10.3390/nano11123314 |
author2-role |
verfasserin |
title_sort |
deep learning analysis reveals nitrogen-doped graphene quantum dots damage neurons of nematode <i<caenorhabditis elegans</i< |
callnumber |
QD1-999 |
title_auth |
A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i< |
abstract |
Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study used the nematode <i<Caenorhabditis elegans</i< (<i<C. elegans</i<), which has become a valuable animal model in nanotoxicological studies due to its multiple advantages, to undertake a bio-safety assessment of N-GQDs in the nervous system with the assistance of a deep learning model. The findings suggested that accumulated N-GQDs in the nematodes’ bodies damaged their normal behavior in a dose- and time-dependent manner, and the impairments of the nervous system were obviously severe when the exposure dosages were above 100 μg/mL. When assessing the morphological changes of neurons caused by N-GQDs, a quantitative image-based analysis based on a deep neural network algorithm (YOLACT) was used because traditional image-based analysis is labor-intensive and limited to qualitative evaluation. The quantitative results indicated that N-GQDs damaged dopaminergic and glutamatergic neurons, which are involved in the neurotoxic effects of N-GQDs in the nematode <i<C. elegans</i<. This study not only suggests a fast and economic <i<C. elegans</i< model to undertake the risk assessment of nanomaterials in the nervous system, but also provides a valuable deep learning approach to quantitatively track subtle morphological changes of neurons at an unbiased level in a nanotoxicological study using <i<C. elegans</i<. |
abstractGer |
Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study used the nematode <i<Caenorhabditis elegans</i< (<i<C. elegans</i<), which has become a valuable animal model in nanotoxicological studies due to its multiple advantages, to undertake a bio-safety assessment of N-GQDs in the nervous system with the assistance of a deep learning model. The findings suggested that accumulated N-GQDs in the nematodes’ bodies damaged their normal behavior in a dose- and time-dependent manner, and the impairments of the nervous system were obviously severe when the exposure dosages were above 100 μg/mL. When assessing the morphological changes of neurons caused by N-GQDs, a quantitative image-based analysis based on a deep neural network algorithm (YOLACT) was used because traditional image-based analysis is labor-intensive and limited to qualitative evaluation. The quantitative results indicated that N-GQDs damaged dopaminergic and glutamatergic neurons, which are involved in the neurotoxic effects of N-GQDs in the nematode <i<C. elegans</i<. This study not only suggests a fast and economic <i<C. elegans</i< model to undertake the risk assessment of nanomaterials in the nervous system, but also provides a valuable deep learning approach to quantitatively track subtle morphological changes of neurons at an unbiased level in a nanotoxicological study using <i<C. elegans</i<. |
abstract_unstemmed |
Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study used the nematode <i<Caenorhabditis elegans</i< (<i<C. elegans</i<), which has become a valuable animal model in nanotoxicological studies due to its multiple advantages, to undertake a bio-safety assessment of N-GQDs in the nervous system with the assistance of a deep learning model. The findings suggested that accumulated N-GQDs in the nematodes’ bodies damaged their normal behavior in a dose- and time-dependent manner, and the impairments of the nervous system were obviously severe when the exposure dosages were above 100 μg/mL. When assessing the morphological changes of neurons caused by N-GQDs, a quantitative image-based analysis based on a deep neural network algorithm (YOLACT) was used because traditional image-based analysis is labor-intensive and limited to qualitative evaluation. The quantitative results indicated that N-GQDs damaged dopaminergic and glutamatergic neurons, which are involved in the neurotoxic effects of N-GQDs in the nematode <i<C. elegans</i<. This study not only suggests a fast and economic <i<C. elegans</i< model to undertake the risk assessment of nanomaterials in the nervous system, but also provides a valuable deep learning approach to quantitatively track subtle morphological changes of neurons at an unbiased level in a nanotoxicological study using <i<C. elegans</i<. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 3314 |
title_short |
A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i< |
url |
https://doi.org/10.3390/nano11123314 https://doaj.org/article/e25f0e96c2fc43418fe195c78f789640 https://www.mdpi.com/2079-4991/11/12/3314 https://doaj.org/toc/2079-4991 |
remote_bool |
true |
author2 |
Xinyu Wang Xiaomeng Zhang Jin Cheng Jixiang Zhang Min Chen Tianshu Wu |
author2Str |
Xinyu Wang Xiaomeng Zhang Jin Cheng Jixiang Zhang Min Chen Tianshu Wu |
ppnlink |
718627199 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/nano11123314 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T17:35:03.399Z |
_version_ |
1803580188574875648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003366464</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414223307.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano11123314</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003366464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe25f0e96c2fc43418fe195c78f789640</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hongsheng Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode <i<Caenorhabditis elegans</i<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study used the nematode <i<Caenorhabditis elegans</i< (<i<C. elegans</i<), which has become a valuable animal model in nanotoxicological studies due to its multiple advantages, to undertake a bio-safety assessment of N-GQDs in the nervous system with the assistance of a deep learning model. The findings suggested that accumulated N-GQDs in the nematodes’ bodies damaged their normal behavior in a dose- and time-dependent manner, and the impairments of the nervous system were obviously severe when the exposure dosages were above 100 μg/mL. When assessing the morphological changes of neurons caused by N-GQDs, a quantitative image-based analysis based on a deep neural network algorithm (YOLACT) was used because traditional image-based analysis is labor-intensive and limited to qualitative evaluation. The quantitative results indicated that N-GQDs damaged dopaminergic and glutamatergic neurons, which are involved in the neurotoxic effects of N-GQDs in the nematode <i<C. elegans</i<. This study not only suggests a fast and economic <i<C. elegans</i< model to undertake the risk assessment of nanomaterials in the nervous system, but also provides a valuable deep learning approach to quantitatively track subtle morphological changes of neurons at an unbiased level in a nanotoxicological study using <i<C. elegans</i<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanotoxicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neurotoxicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neurobehavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phenotyping</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinyu Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaomeng Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jin Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jixiang Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianshu Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 12, p 3314</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12, p 3314</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano11123314</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e25f0e96c2fc43418fe195c78f789640</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/11/12/3314</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">12, p 3314</subfield></datafield></record></collection>
|
score |
7.401639 |