Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass
Abstract Background Environmental DNA (eDNA) analysis has been recently applied to the surveillance of species distribution and composition in aquatic ecosystems. However, most eDNA studies have used mitochondrial DNA markers, and those using nuclear DNA markers are quite scarce. Moreover, although...
Ausführliche Beschreibung
Autor*in: |
Toshiaki Jo [verfasserIn] Mio Arimoto [verfasserIn] Hiroaki Murakami [verfasserIn] Reiji Masuda [verfasserIn] Toshifumi Minamoto [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Environmental DNA - Wiley, 2019, 2(2020), 2, Seite 140-151 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2020 ; number:2 ; pages:140-151 |
Links: |
---|
DOI / URN: |
10.1002/edn3.51 |
---|
Katalog-ID: |
DOAJ003843297 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ003843297 | ||
003 | DE-627 | ||
005 | 20230309180647.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/edn3.51 |2 doi | |
035 | |a (DE-627)DOAJ003843297 | ||
035 | |a (DE-599)DOAJ8de70c9b8aa44188aa19abdf8401397c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a GE1-350 | |
050 | 0 | |a QR100-130 | |
100 | 0 | |a Toshiaki Jo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Environmental DNA (eDNA) analysis has been recently applied to the surveillance of species distribution and composition in aquatic ecosystems. However, most eDNA studies have used mitochondrial DNA markers, and those using nuclear DNA markers are quite scarce. Moreover, although some studies reported the availability of nuclear DNA markers for eDNA analyses, the characteristics and dynamics of nuclear environmental DNA (nu‐eDNA) of macro‐organisms remain unknown. Herein, we re‐analyzed eDNA samples described in a previously published paper to investigate the shedding and decay rates of nu‐eDNA from Japanese Jack Mackerel (Trachurus japonicus) and compared them to those of mt‐eDNA (mitochondrial environmental DNA). Materials & Methods Tank experiments consisting of 12 combinations of four temperatures and three fish biomass levels were performed, and four tank replicates were prepared for each treatment level. Before and after removing the fish from the tanks, we sampled rearing water over time to quantify nu‐eDNA copy numbers. Results & Discussion Model fitting to eDNA decay curves demonstrated that nu‐eDNA decay rates increased in higher water temperature and with larger fish biomass. The estimated shedding rates of nu‐eDNA also increased with higher temperature and larger biomass. These results were generally consistent with those of mt‐eDNA. Moreover, the ratio of mt‐eDNA to nu‐eDNA shedding and concentration decreased with larger fish biomass levels, which implied that these values may be among the potential indices for estimating the age and body size of organisms from environmental samples. Our findings contribute to the understanding of eDNA characteristics and dynamics between different DNA markers and may help us to interpret future results of eDNA surveillance. | ||
650 | 4 | |a environmental DNA | |
650 | 4 | |a internal transcribed spacer‐1 | |
650 | 4 | |a Japanese Jack Mackerel (Trachurus japonicus) | |
650 | 4 | |a mitochondrial DNA | |
650 | 4 | |a nuclear DNA | |
650 | 4 | |a quantitative real‐time PCR | |
653 | 0 | |a Environmental sciences | |
653 | 0 | |a Microbial ecology | |
700 | 0 | |a Mio Arimoto |e verfasserin |4 aut | |
700 | 0 | |a Hiroaki Murakami |e verfasserin |4 aut | |
700 | 0 | |a Reiji Masuda |e verfasserin |4 aut | |
700 | 0 | |a Toshifumi Minamoto |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Environmental DNA |d Wiley, 2019 |g 2(2020), 2, Seite 140-151 |w (DE-627)1683467949 |w (DE-600)3001165-6 |x 26374943 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2020 |g number:2 |g pages:140-151 |
856 | 4 | 0 | |u https://doi.org/10.1002/edn3.51 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8de70c9b8aa44188aa19abdf8401397c |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/edn3.51 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2637-4943 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2020 |e 2 |h 140-151 |
author_variant |
t j tj m a ma h m hm r m rm t m tm |
---|---|
matchkey_str |
article:26374943:2020----::siaighdigndcyaeoevrnetluladaiheainoa |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
GE |
publishDate |
2020 |
allfields |
10.1002/edn3.51 doi (DE-627)DOAJ003843297 (DE-599)DOAJ8de70c9b8aa44188aa19abdf8401397c DE-627 ger DE-627 rakwb eng GE1-350 QR100-130 Toshiaki Jo verfasserin aut Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Environmental DNA (eDNA) analysis has been recently applied to the surveillance of species distribution and composition in aquatic ecosystems. However, most eDNA studies have used mitochondrial DNA markers, and those using nuclear DNA markers are quite scarce. Moreover, although some studies reported the availability of nuclear DNA markers for eDNA analyses, the characteristics and dynamics of nuclear environmental DNA (nu‐eDNA) of macro‐organisms remain unknown. Herein, we re‐analyzed eDNA samples described in a previously published paper to investigate the shedding and decay rates of nu‐eDNA from Japanese Jack Mackerel (Trachurus japonicus) and compared them to those of mt‐eDNA (mitochondrial environmental DNA). Materials & Methods Tank experiments consisting of 12 combinations of four temperatures and three fish biomass levels were performed, and four tank replicates were prepared for each treatment level. Before and after removing the fish from the tanks, we sampled rearing water over time to quantify nu‐eDNA copy numbers. Results & Discussion Model fitting to eDNA decay curves demonstrated that nu‐eDNA decay rates increased in higher water temperature and with larger fish biomass. The estimated shedding rates of nu‐eDNA also increased with higher temperature and larger biomass. These results were generally consistent with those of mt‐eDNA. Moreover, the ratio of mt‐eDNA to nu‐eDNA shedding and concentration decreased with larger fish biomass levels, which implied that these values may be among the potential indices for estimating the age and body size of organisms from environmental samples. Our findings contribute to the understanding of eDNA characteristics and dynamics between different DNA markers and may help us to interpret future results of eDNA surveillance. environmental DNA internal transcribed spacer‐1 Japanese Jack Mackerel (Trachurus japonicus) mitochondrial DNA nuclear DNA quantitative real‐time PCR Environmental sciences Microbial ecology Mio Arimoto verfasserin aut Hiroaki Murakami verfasserin aut Reiji Masuda verfasserin aut Toshifumi Minamoto verfasserin aut In Environmental DNA Wiley, 2019 2(2020), 2, Seite 140-151 (DE-627)1683467949 (DE-600)3001165-6 26374943 nnns volume:2 year:2020 number:2 pages:140-151 https://doi.org/10.1002/edn3.51 kostenfrei https://doaj.org/article/8de70c9b8aa44188aa19abdf8401397c kostenfrei https://doi.org/10.1002/edn3.51 kostenfrei https://doaj.org/toc/2637-4943 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2020 2 140-151 |
spelling |
10.1002/edn3.51 doi (DE-627)DOAJ003843297 (DE-599)DOAJ8de70c9b8aa44188aa19abdf8401397c DE-627 ger DE-627 rakwb eng GE1-350 QR100-130 Toshiaki Jo verfasserin aut Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Environmental DNA (eDNA) analysis has been recently applied to the surveillance of species distribution and composition in aquatic ecosystems. However, most eDNA studies have used mitochondrial DNA markers, and those using nuclear DNA markers are quite scarce. Moreover, although some studies reported the availability of nuclear DNA markers for eDNA analyses, the characteristics and dynamics of nuclear environmental DNA (nu‐eDNA) of macro‐organisms remain unknown. Herein, we re‐analyzed eDNA samples described in a previously published paper to investigate the shedding and decay rates of nu‐eDNA from Japanese Jack Mackerel (Trachurus japonicus) and compared them to those of mt‐eDNA (mitochondrial environmental DNA). Materials & Methods Tank experiments consisting of 12 combinations of four temperatures and three fish biomass levels were performed, and four tank replicates were prepared for each treatment level. Before and after removing the fish from the tanks, we sampled rearing water over time to quantify nu‐eDNA copy numbers. Results & Discussion Model fitting to eDNA decay curves demonstrated that nu‐eDNA decay rates increased in higher water temperature and with larger fish biomass. The estimated shedding rates of nu‐eDNA also increased with higher temperature and larger biomass. These results were generally consistent with those of mt‐eDNA. Moreover, the ratio of mt‐eDNA to nu‐eDNA shedding and concentration decreased with larger fish biomass levels, which implied that these values may be among the potential indices for estimating the age and body size of organisms from environmental samples. Our findings contribute to the understanding of eDNA characteristics and dynamics between different DNA markers and may help us to interpret future results of eDNA surveillance. environmental DNA internal transcribed spacer‐1 Japanese Jack Mackerel (Trachurus japonicus) mitochondrial DNA nuclear DNA quantitative real‐time PCR Environmental sciences Microbial ecology Mio Arimoto verfasserin aut Hiroaki Murakami verfasserin aut Reiji Masuda verfasserin aut Toshifumi Minamoto verfasserin aut In Environmental DNA Wiley, 2019 2(2020), 2, Seite 140-151 (DE-627)1683467949 (DE-600)3001165-6 26374943 nnns volume:2 year:2020 number:2 pages:140-151 https://doi.org/10.1002/edn3.51 kostenfrei https://doaj.org/article/8de70c9b8aa44188aa19abdf8401397c kostenfrei https://doi.org/10.1002/edn3.51 kostenfrei https://doaj.org/toc/2637-4943 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2020 2 140-151 |
allfields_unstemmed |
10.1002/edn3.51 doi (DE-627)DOAJ003843297 (DE-599)DOAJ8de70c9b8aa44188aa19abdf8401397c DE-627 ger DE-627 rakwb eng GE1-350 QR100-130 Toshiaki Jo verfasserin aut Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Environmental DNA (eDNA) analysis has been recently applied to the surveillance of species distribution and composition in aquatic ecosystems. However, most eDNA studies have used mitochondrial DNA markers, and those using nuclear DNA markers are quite scarce. Moreover, although some studies reported the availability of nuclear DNA markers for eDNA analyses, the characteristics and dynamics of nuclear environmental DNA (nu‐eDNA) of macro‐organisms remain unknown. Herein, we re‐analyzed eDNA samples described in a previously published paper to investigate the shedding and decay rates of nu‐eDNA from Japanese Jack Mackerel (Trachurus japonicus) and compared them to those of mt‐eDNA (mitochondrial environmental DNA). Materials & Methods Tank experiments consisting of 12 combinations of four temperatures and three fish biomass levels were performed, and four tank replicates were prepared for each treatment level. Before and after removing the fish from the tanks, we sampled rearing water over time to quantify nu‐eDNA copy numbers. Results & Discussion Model fitting to eDNA decay curves demonstrated that nu‐eDNA decay rates increased in higher water temperature and with larger fish biomass. The estimated shedding rates of nu‐eDNA also increased with higher temperature and larger biomass. These results were generally consistent with those of mt‐eDNA. Moreover, the ratio of mt‐eDNA to nu‐eDNA shedding and concentration decreased with larger fish biomass levels, which implied that these values may be among the potential indices for estimating the age and body size of organisms from environmental samples. Our findings contribute to the understanding of eDNA characteristics and dynamics between different DNA markers and may help us to interpret future results of eDNA surveillance. environmental DNA internal transcribed spacer‐1 Japanese Jack Mackerel (Trachurus japonicus) mitochondrial DNA nuclear DNA quantitative real‐time PCR Environmental sciences Microbial ecology Mio Arimoto verfasserin aut Hiroaki Murakami verfasserin aut Reiji Masuda verfasserin aut Toshifumi Minamoto verfasserin aut In Environmental DNA Wiley, 2019 2(2020), 2, Seite 140-151 (DE-627)1683467949 (DE-600)3001165-6 26374943 nnns volume:2 year:2020 number:2 pages:140-151 https://doi.org/10.1002/edn3.51 kostenfrei https://doaj.org/article/8de70c9b8aa44188aa19abdf8401397c kostenfrei https://doi.org/10.1002/edn3.51 kostenfrei https://doaj.org/toc/2637-4943 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2020 2 140-151 |
allfieldsGer |
10.1002/edn3.51 doi (DE-627)DOAJ003843297 (DE-599)DOAJ8de70c9b8aa44188aa19abdf8401397c DE-627 ger DE-627 rakwb eng GE1-350 QR100-130 Toshiaki Jo verfasserin aut Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Environmental DNA (eDNA) analysis has been recently applied to the surveillance of species distribution and composition in aquatic ecosystems. However, most eDNA studies have used mitochondrial DNA markers, and those using nuclear DNA markers are quite scarce. Moreover, although some studies reported the availability of nuclear DNA markers for eDNA analyses, the characteristics and dynamics of nuclear environmental DNA (nu‐eDNA) of macro‐organisms remain unknown. Herein, we re‐analyzed eDNA samples described in a previously published paper to investigate the shedding and decay rates of nu‐eDNA from Japanese Jack Mackerel (Trachurus japonicus) and compared them to those of mt‐eDNA (mitochondrial environmental DNA). Materials & Methods Tank experiments consisting of 12 combinations of four temperatures and three fish biomass levels were performed, and four tank replicates were prepared for each treatment level. Before and after removing the fish from the tanks, we sampled rearing water over time to quantify nu‐eDNA copy numbers. Results & Discussion Model fitting to eDNA decay curves demonstrated that nu‐eDNA decay rates increased in higher water temperature and with larger fish biomass. The estimated shedding rates of nu‐eDNA also increased with higher temperature and larger biomass. These results were generally consistent with those of mt‐eDNA. Moreover, the ratio of mt‐eDNA to nu‐eDNA shedding and concentration decreased with larger fish biomass levels, which implied that these values may be among the potential indices for estimating the age and body size of organisms from environmental samples. Our findings contribute to the understanding of eDNA characteristics and dynamics between different DNA markers and may help us to interpret future results of eDNA surveillance. environmental DNA internal transcribed spacer‐1 Japanese Jack Mackerel (Trachurus japonicus) mitochondrial DNA nuclear DNA quantitative real‐time PCR Environmental sciences Microbial ecology Mio Arimoto verfasserin aut Hiroaki Murakami verfasserin aut Reiji Masuda verfasserin aut Toshifumi Minamoto verfasserin aut In Environmental DNA Wiley, 2019 2(2020), 2, Seite 140-151 (DE-627)1683467949 (DE-600)3001165-6 26374943 nnns volume:2 year:2020 number:2 pages:140-151 https://doi.org/10.1002/edn3.51 kostenfrei https://doaj.org/article/8de70c9b8aa44188aa19abdf8401397c kostenfrei https://doi.org/10.1002/edn3.51 kostenfrei https://doaj.org/toc/2637-4943 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2020 2 140-151 |
allfieldsSound |
10.1002/edn3.51 doi (DE-627)DOAJ003843297 (DE-599)DOAJ8de70c9b8aa44188aa19abdf8401397c DE-627 ger DE-627 rakwb eng GE1-350 QR100-130 Toshiaki Jo verfasserin aut Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Environmental DNA (eDNA) analysis has been recently applied to the surveillance of species distribution and composition in aquatic ecosystems. However, most eDNA studies have used mitochondrial DNA markers, and those using nuclear DNA markers are quite scarce. Moreover, although some studies reported the availability of nuclear DNA markers for eDNA analyses, the characteristics and dynamics of nuclear environmental DNA (nu‐eDNA) of macro‐organisms remain unknown. Herein, we re‐analyzed eDNA samples described in a previously published paper to investigate the shedding and decay rates of nu‐eDNA from Japanese Jack Mackerel (Trachurus japonicus) and compared them to those of mt‐eDNA (mitochondrial environmental DNA). Materials & Methods Tank experiments consisting of 12 combinations of four temperatures and three fish biomass levels were performed, and four tank replicates were prepared for each treatment level. Before and after removing the fish from the tanks, we sampled rearing water over time to quantify nu‐eDNA copy numbers. Results & Discussion Model fitting to eDNA decay curves demonstrated that nu‐eDNA decay rates increased in higher water temperature and with larger fish biomass. The estimated shedding rates of nu‐eDNA also increased with higher temperature and larger biomass. These results were generally consistent with those of mt‐eDNA. Moreover, the ratio of mt‐eDNA to nu‐eDNA shedding and concentration decreased with larger fish biomass levels, which implied that these values may be among the potential indices for estimating the age and body size of organisms from environmental samples. Our findings contribute to the understanding of eDNA characteristics and dynamics between different DNA markers and may help us to interpret future results of eDNA surveillance. environmental DNA internal transcribed spacer‐1 Japanese Jack Mackerel (Trachurus japonicus) mitochondrial DNA nuclear DNA quantitative real‐time PCR Environmental sciences Microbial ecology Mio Arimoto verfasserin aut Hiroaki Murakami verfasserin aut Reiji Masuda verfasserin aut Toshifumi Minamoto verfasserin aut In Environmental DNA Wiley, 2019 2(2020), 2, Seite 140-151 (DE-627)1683467949 (DE-600)3001165-6 26374943 nnns volume:2 year:2020 number:2 pages:140-151 https://doi.org/10.1002/edn3.51 kostenfrei https://doaj.org/article/8de70c9b8aa44188aa19abdf8401397c kostenfrei https://doi.org/10.1002/edn3.51 kostenfrei https://doaj.org/toc/2637-4943 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2020 2 140-151 |
language |
English |
source |
In Environmental DNA 2(2020), 2, Seite 140-151 volume:2 year:2020 number:2 pages:140-151 |
sourceStr |
In Environmental DNA 2(2020), 2, Seite 140-151 volume:2 year:2020 number:2 pages:140-151 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
environmental DNA internal transcribed spacer‐1 Japanese Jack Mackerel (Trachurus japonicus) mitochondrial DNA nuclear DNA quantitative real‐time PCR Environmental sciences Microbial ecology |
isfreeaccess_bool |
true |
container_title |
Environmental DNA |
authorswithroles_txt_mv |
Toshiaki Jo @@aut@@ Mio Arimoto @@aut@@ Hiroaki Murakami @@aut@@ Reiji Masuda @@aut@@ Toshifumi Minamoto @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
1683467949 |
id |
DOAJ003843297 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003843297</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309180647.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/edn3.51</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003843297</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8de70c9b8aa44188aa19abdf8401397c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR100-130</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Toshiaki Jo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Environmental DNA (eDNA) analysis has been recently applied to the surveillance of species distribution and composition in aquatic ecosystems. However, most eDNA studies have used mitochondrial DNA markers, and those using nuclear DNA markers are quite scarce. Moreover, although some studies reported the availability of nuclear DNA markers for eDNA analyses, the characteristics and dynamics of nuclear environmental DNA (nu‐eDNA) of macro‐organisms remain unknown. Herein, we re‐analyzed eDNA samples described in a previously published paper to investigate the shedding and decay rates of nu‐eDNA from Japanese Jack Mackerel (Trachurus japonicus) and compared them to those of mt‐eDNA (mitochondrial environmental DNA). Materials & Methods Tank experiments consisting of 12 combinations of four temperatures and three fish biomass levels were performed, and four tank replicates were prepared for each treatment level. Before and after removing the fish from the tanks, we sampled rearing water over time to quantify nu‐eDNA copy numbers. Results & Discussion Model fitting to eDNA decay curves demonstrated that nu‐eDNA decay rates increased in higher water temperature and with larger fish biomass. The estimated shedding rates of nu‐eDNA also increased with higher temperature and larger biomass. These results were generally consistent with those of mt‐eDNA. Moreover, the ratio of mt‐eDNA to nu‐eDNA shedding and concentration decreased with larger fish biomass levels, which implied that these values may be among the potential indices for estimating the age and body size of organisms from environmental samples. Our findings contribute to the understanding of eDNA characteristics and dynamics between different DNA markers and may help us to interpret future results of eDNA surveillance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">environmental DNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">internal transcribed spacer‐1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Japanese Jack Mackerel (Trachurus japonicus)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mitochondrial DNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nuclear DNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantitative real‐time PCR</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbial ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mio Arimoto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hiroaki Murakami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Reiji Masuda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshifumi Minamoto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Environmental DNA</subfield><subfield code="d">Wiley, 2019</subfield><subfield code="g">2(2020), 2, Seite 140-151</subfield><subfield code="w">(DE-627)1683467949</subfield><subfield code="w">(DE-600)3001165-6</subfield><subfield code="x">26374943</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:140-151</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/edn3.51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8de70c9b8aa44188aa19abdf8401397c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/edn3.51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2637-4943</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="h">140-151</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Toshiaki Jo |
spellingShingle |
Toshiaki Jo misc GE1-350 misc QR100-130 misc environmental DNA misc internal transcribed spacer‐1 misc Japanese Jack Mackerel (Trachurus japonicus) misc mitochondrial DNA misc nuclear DNA misc quantitative real‐time PCR misc Environmental sciences misc Microbial ecology Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass |
authorStr |
Toshiaki Jo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1683467949 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GE1-350 |
illustrated |
Not Illustrated |
issn |
26374943 |
topic_title |
GE1-350 QR100-130 Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass environmental DNA internal transcribed spacer‐1 Japanese Jack Mackerel (Trachurus japonicus) mitochondrial DNA nuclear DNA quantitative real‐time PCR |
topic |
misc GE1-350 misc QR100-130 misc environmental DNA misc internal transcribed spacer‐1 misc Japanese Jack Mackerel (Trachurus japonicus) misc mitochondrial DNA misc nuclear DNA misc quantitative real‐time PCR misc Environmental sciences misc Microbial ecology |
topic_unstemmed |
misc GE1-350 misc QR100-130 misc environmental DNA misc internal transcribed spacer‐1 misc Japanese Jack Mackerel (Trachurus japonicus) misc mitochondrial DNA misc nuclear DNA misc quantitative real‐time PCR misc Environmental sciences misc Microbial ecology |
topic_browse |
misc GE1-350 misc QR100-130 misc environmental DNA misc internal transcribed spacer‐1 misc Japanese Jack Mackerel (Trachurus japonicus) misc mitochondrial DNA misc nuclear DNA misc quantitative real‐time PCR misc Environmental sciences misc Microbial ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Environmental DNA |
hierarchy_parent_id |
1683467949 |
hierarchy_top_title |
Environmental DNA |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1683467949 (DE-600)3001165-6 |
title |
Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass |
ctrlnum |
(DE-627)DOAJ003843297 (DE-599)DOAJ8de70c9b8aa44188aa19abdf8401397c |
title_full |
Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass |
author_sort |
Toshiaki Jo |
journal |
Environmental DNA |
journalStr |
Environmental DNA |
callnumber-first-code |
G |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
140 |
author_browse |
Toshiaki Jo Mio Arimoto Hiroaki Murakami Reiji Masuda Toshifumi Minamoto |
container_volume |
2 |
class |
GE1-350 QR100-130 |
format_se |
Elektronische Aufsätze |
author-letter |
Toshiaki Jo |
doi_str_mv |
10.1002/edn3.51 |
author2-role |
verfasserin |
title_sort |
estimating shedding and decay rates of environmental nuclear dna with relation to water temperature and biomass |
callnumber |
GE1-350 |
title_auth |
Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass |
abstract |
Abstract Background Environmental DNA (eDNA) analysis has been recently applied to the surveillance of species distribution and composition in aquatic ecosystems. However, most eDNA studies have used mitochondrial DNA markers, and those using nuclear DNA markers are quite scarce. Moreover, although some studies reported the availability of nuclear DNA markers for eDNA analyses, the characteristics and dynamics of nuclear environmental DNA (nu‐eDNA) of macro‐organisms remain unknown. Herein, we re‐analyzed eDNA samples described in a previously published paper to investigate the shedding and decay rates of nu‐eDNA from Japanese Jack Mackerel (Trachurus japonicus) and compared them to those of mt‐eDNA (mitochondrial environmental DNA). Materials & Methods Tank experiments consisting of 12 combinations of four temperatures and three fish biomass levels were performed, and four tank replicates were prepared for each treatment level. Before and after removing the fish from the tanks, we sampled rearing water over time to quantify nu‐eDNA copy numbers. Results & Discussion Model fitting to eDNA decay curves demonstrated that nu‐eDNA decay rates increased in higher water temperature and with larger fish biomass. The estimated shedding rates of nu‐eDNA also increased with higher temperature and larger biomass. These results were generally consistent with those of mt‐eDNA. Moreover, the ratio of mt‐eDNA to nu‐eDNA shedding and concentration decreased with larger fish biomass levels, which implied that these values may be among the potential indices for estimating the age and body size of organisms from environmental samples. Our findings contribute to the understanding of eDNA characteristics and dynamics between different DNA markers and may help us to interpret future results of eDNA surveillance. |
abstractGer |
Abstract Background Environmental DNA (eDNA) analysis has been recently applied to the surveillance of species distribution and composition in aquatic ecosystems. However, most eDNA studies have used mitochondrial DNA markers, and those using nuclear DNA markers are quite scarce. Moreover, although some studies reported the availability of nuclear DNA markers for eDNA analyses, the characteristics and dynamics of nuclear environmental DNA (nu‐eDNA) of macro‐organisms remain unknown. Herein, we re‐analyzed eDNA samples described in a previously published paper to investigate the shedding and decay rates of nu‐eDNA from Japanese Jack Mackerel (Trachurus japonicus) and compared them to those of mt‐eDNA (mitochondrial environmental DNA). Materials & Methods Tank experiments consisting of 12 combinations of four temperatures and three fish biomass levels were performed, and four tank replicates were prepared for each treatment level. Before and after removing the fish from the tanks, we sampled rearing water over time to quantify nu‐eDNA copy numbers. Results & Discussion Model fitting to eDNA decay curves demonstrated that nu‐eDNA decay rates increased in higher water temperature and with larger fish biomass. The estimated shedding rates of nu‐eDNA also increased with higher temperature and larger biomass. These results were generally consistent with those of mt‐eDNA. Moreover, the ratio of mt‐eDNA to nu‐eDNA shedding and concentration decreased with larger fish biomass levels, which implied that these values may be among the potential indices for estimating the age and body size of organisms from environmental samples. Our findings contribute to the understanding of eDNA characteristics and dynamics between different DNA markers and may help us to interpret future results of eDNA surveillance. |
abstract_unstemmed |
Abstract Background Environmental DNA (eDNA) analysis has been recently applied to the surveillance of species distribution and composition in aquatic ecosystems. However, most eDNA studies have used mitochondrial DNA markers, and those using nuclear DNA markers are quite scarce. Moreover, although some studies reported the availability of nuclear DNA markers for eDNA analyses, the characteristics and dynamics of nuclear environmental DNA (nu‐eDNA) of macro‐organisms remain unknown. Herein, we re‐analyzed eDNA samples described in a previously published paper to investigate the shedding and decay rates of nu‐eDNA from Japanese Jack Mackerel (Trachurus japonicus) and compared them to those of mt‐eDNA (mitochondrial environmental DNA). Materials & Methods Tank experiments consisting of 12 combinations of four temperatures and three fish biomass levels were performed, and four tank replicates were prepared for each treatment level. Before and after removing the fish from the tanks, we sampled rearing water over time to quantify nu‐eDNA copy numbers. Results & Discussion Model fitting to eDNA decay curves demonstrated that nu‐eDNA decay rates increased in higher water temperature and with larger fish biomass. The estimated shedding rates of nu‐eDNA also increased with higher temperature and larger biomass. These results were generally consistent with those of mt‐eDNA. Moreover, the ratio of mt‐eDNA to nu‐eDNA shedding and concentration decreased with larger fish biomass levels, which implied that these values may be among the potential indices for estimating the age and body size of organisms from environmental samples. Our findings contribute to the understanding of eDNA characteristics and dynamics between different DNA markers and may help us to interpret future results of eDNA surveillance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass |
url |
https://doi.org/10.1002/edn3.51 https://doaj.org/article/8de70c9b8aa44188aa19abdf8401397c https://doaj.org/toc/2637-4943 |
remote_bool |
true |
author2 |
Mio Arimoto Hiroaki Murakami Reiji Masuda Toshifumi Minamoto |
author2Str |
Mio Arimoto Hiroaki Murakami Reiji Masuda Toshifumi Minamoto |
ppnlink |
1683467949 |
callnumber-subject |
GE - Environmental Sciences |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/edn3.51 |
callnumber-a |
GE1-350 |
up_date |
2024-07-03T20:26:08.778Z |
_version_ |
1803590952595488769 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003843297</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309180647.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/edn3.51</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003843297</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8de70c9b8aa44188aa19abdf8401397c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR100-130</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Toshiaki Jo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Environmental DNA (eDNA) analysis has been recently applied to the surveillance of species distribution and composition in aquatic ecosystems. However, most eDNA studies have used mitochondrial DNA markers, and those using nuclear DNA markers are quite scarce. Moreover, although some studies reported the availability of nuclear DNA markers for eDNA analyses, the characteristics and dynamics of nuclear environmental DNA (nu‐eDNA) of macro‐organisms remain unknown. Herein, we re‐analyzed eDNA samples described in a previously published paper to investigate the shedding and decay rates of nu‐eDNA from Japanese Jack Mackerel (Trachurus japonicus) and compared them to those of mt‐eDNA (mitochondrial environmental DNA). Materials & Methods Tank experiments consisting of 12 combinations of four temperatures and three fish biomass levels were performed, and four tank replicates were prepared for each treatment level. Before and after removing the fish from the tanks, we sampled rearing water over time to quantify nu‐eDNA copy numbers. Results & Discussion Model fitting to eDNA decay curves demonstrated that nu‐eDNA decay rates increased in higher water temperature and with larger fish biomass. The estimated shedding rates of nu‐eDNA also increased with higher temperature and larger biomass. These results were generally consistent with those of mt‐eDNA. Moreover, the ratio of mt‐eDNA to nu‐eDNA shedding and concentration decreased with larger fish biomass levels, which implied that these values may be among the potential indices for estimating the age and body size of organisms from environmental samples. Our findings contribute to the understanding of eDNA characteristics and dynamics between different DNA markers and may help us to interpret future results of eDNA surveillance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">environmental DNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">internal transcribed spacer‐1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Japanese Jack Mackerel (Trachurus japonicus)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mitochondrial DNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nuclear DNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantitative real‐time PCR</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbial ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mio Arimoto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hiroaki Murakami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Reiji Masuda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshifumi Minamoto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Environmental DNA</subfield><subfield code="d">Wiley, 2019</subfield><subfield code="g">2(2020), 2, Seite 140-151</subfield><subfield code="w">(DE-627)1683467949</subfield><subfield code="w">(DE-600)3001165-6</subfield><subfield code="x">26374943</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:140-151</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/edn3.51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8de70c9b8aa44188aa19abdf8401397c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/edn3.51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2637-4943</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="h">140-151</subfield></datafield></record></collection>
|
score |
7.4013834 |