The Fibonacci p-numbers and Pascal’s triangle
Pascal’s triangle is the most famous of all number arrays full of patterns and surprises. It is well known that the Fibonacci numbers can be read from Pascal’s triangle. In this paper, we consider the Fibonacci p-numbers and derive an explicit formula for these numbers by using some properties of th...
Ausführliche Beschreibung
Autor*in: |
Kantaphon Kuhapatanakul [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Cogent Mathematics - Taylor & Francis Group, 2015, 3(2016), 1 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2016 ; number:1 |
Links: |
---|
DOI / URN: |
10.1080/23311835.2016.1264176 |
---|
Katalog-ID: |
DOAJ003850730 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ003850730 | ||
003 | DE-627 | ||
005 | 20230503065456.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/23311835.2016.1264176 |2 doi | |
035 | |a (DE-627)DOAJ003850730 | ||
035 | |a (DE-599)DOAJ3e2ac5ed6ba44ace84bc5a36caafafc3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Kantaphon Kuhapatanakul |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Fibonacci p-numbers and Pascal’s triangle |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Pascal’s triangle is the most famous of all number arrays full of patterns and surprises. It is well known that the Fibonacci numbers can be read from Pascal’s triangle. In this paper, we consider the Fibonacci p-numbers and derive an explicit formula for these numbers by using some properties of the Pascal’s triangle. We also introduce the companion matrix of the Fibonacci p-numbers and give some identities of the Fibonacci p-numbers by using some properties of our matrix. | ||
650 | 4 | |a Fibonacci p-numbers | |
650 | 4 | |a Pascal’s triangle | |
650 | 4 | |a Fibonacci p-matrix | |
650 | 4 | |a Fibonacci p-triangle | |
653 | 0 | |a Mathematics | |
773 | 0 | 8 | |i In |t Cogent Mathematics |d Taylor & Francis Group, 2015 |g 3(2016), 1 |w (DE-627)823090817 |w (DE-600)2818161-X |x 23311835 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2016 |g number:1 |
856 | 4 | 0 | |u https://doi.org/10.1080/23311835.2016.1264176 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3e2ac5ed6ba44ace84bc5a36caafafc3 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1080/23311835.2016.1264176 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2331-1835 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2016 |e 1 |
author_variant |
k k kk |
---|---|
matchkey_str |
article:23311835:2016----::hfbncinmesnps |
hierarchy_sort_str |
2016 |
callnumber-subject-code |
QA |
publishDate |
2016 |
allfields |
10.1080/23311835.2016.1264176 doi (DE-627)DOAJ003850730 (DE-599)DOAJ3e2ac5ed6ba44ace84bc5a36caafafc3 DE-627 ger DE-627 rakwb eng QA1-939 Kantaphon Kuhapatanakul verfasserin aut The Fibonacci p-numbers and Pascal’s triangle 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pascal’s triangle is the most famous of all number arrays full of patterns and surprises. It is well known that the Fibonacci numbers can be read from Pascal’s triangle. In this paper, we consider the Fibonacci p-numbers and derive an explicit formula for these numbers by using some properties of the Pascal’s triangle. We also introduce the companion matrix of the Fibonacci p-numbers and give some identities of the Fibonacci p-numbers by using some properties of our matrix. Fibonacci p-numbers Pascal’s triangle Fibonacci p-matrix Fibonacci p-triangle Mathematics In Cogent Mathematics Taylor & Francis Group, 2015 3(2016), 1 (DE-627)823090817 (DE-600)2818161-X 23311835 nnns volume:3 year:2016 number:1 https://doi.org/10.1080/23311835.2016.1264176 kostenfrei https://doaj.org/article/3e2ac5ed6ba44ace84bc5a36caafafc3 kostenfrei http://dx.doi.org/10.1080/23311835.2016.1264176 kostenfrei https://doaj.org/toc/2331-1835 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2016 1 |
spelling |
10.1080/23311835.2016.1264176 doi (DE-627)DOAJ003850730 (DE-599)DOAJ3e2ac5ed6ba44ace84bc5a36caafafc3 DE-627 ger DE-627 rakwb eng QA1-939 Kantaphon Kuhapatanakul verfasserin aut The Fibonacci p-numbers and Pascal’s triangle 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pascal’s triangle is the most famous of all number arrays full of patterns and surprises. It is well known that the Fibonacci numbers can be read from Pascal’s triangle. In this paper, we consider the Fibonacci p-numbers and derive an explicit formula for these numbers by using some properties of the Pascal’s triangle. We also introduce the companion matrix of the Fibonacci p-numbers and give some identities of the Fibonacci p-numbers by using some properties of our matrix. Fibonacci p-numbers Pascal’s triangle Fibonacci p-matrix Fibonacci p-triangle Mathematics In Cogent Mathematics Taylor & Francis Group, 2015 3(2016), 1 (DE-627)823090817 (DE-600)2818161-X 23311835 nnns volume:3 year:2016 number:1 https://doi.org/10.1080/23311835.2016.1264176 kostenfrei https://doaj.org/article/3e2ac5ed6ba44ace84bc5a36caafafc3 kostenfrei http://dx.doi.org/10.1080/23311835.2016.1264176 kostenfrei https://doaj.org/toc/2331-1835 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2016 1 |
allfields_unstemmed |
10.1080/23311835.2016.1264176 doi (DE-627)DOAJ003850730 (DE-599)DOAJ3e2ac5ed6ba44ace84bc5a36caafafc3 DE-627 ger DE-627 rakwb eng QA1-939 Kantaphon Kuhapatanakul verfasserin aut The Fibonacci p-numbers and Pascal’s triangle 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pascal’s triangle is the most famous of all number arrays full of patterns and surprises. It is well known that the Fibonacci numbers can be read from Pascal’s triangle. In this paper, we consider the Fibonacci p-numbers and derive an explicit formula for these numbers by using some properties of the Pascal’s triangle. We also introduce the companion matrix of the Fibonacci p-numbers and give some identities of the Fibonacci p-numbers by using some properties of our matrix. Fibonacci p-numbers Pascal’s triangle Fibonacci p-matrix Fibonacci p-triangle Mathematics In Cogent Mathematics Taylor & Francis Group, 2015 3(2016), 1 (DE-627)823090817 (DE-600)2818161-X 23311835 nnns volume:3 year:2016 number:1 https://doi.org/10.1080/23311835.2016.1264176 kostenfrei https://doaj.org/article/3e2ac5ed6ba44ace84bc5a36caafafc3 kostenfrei http://dx.doi.org/10.1080/23311835.2016.1264176 kostenfrei https://doaj.org/toc/2331-1835 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2016 1 |
allfieldsGer |
10.1080/23311835.2016.1264176 doi (DE-627)DOAJ003850730 (DE-599)DOAJ3e2ac5ed6ba44ace84bc5a36caafafc3 DE-627 ger DE-627 rakwb eng QA1-939 Kantaphon Kuhapatanakul verfasserin aut The Fibonacci p-numbers and Pascal’s triangle 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pascal’s triangle is the most famous of all number arrays full of patterns and surprises. It is well known that the Fibonacci numbers can be read from Pascal’s triangle. In this paper, we consider the Fibonacci p-numbers and derive an explicit formula for these numbers by using some properties of the Pascal’s triangle. We also introduce the companion matrix of the Fibonacci p-numbers and give some identities of the Fibonacci p-numbers by using some properties of our matrix. Fibonacci p-numbers Pascal’s triangle Fibonacci p-matrix Fibonacci p-triangle Mathematics In Cogent Mathematics Taylor & Francis Group, 2015 3(2016), 1 (DE-627)823090817 (DE-600)2818161-X 23311835 nnns volume:3 year:2016 number:1 https://doi.org/10.1080/23311835.2016.1264176 kostenfrei https://doaj.org/article/3e2ac5ed6ba44ace84bc5a36caafafc3 kostenfrei http://dx.doi.org/10.1080/23311835.2016.1264176 kostenfrei https://doaj.org/toc/2331-1835 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2016 1 |
allfieldsSound |
10.1080/23311835.2016.1264176 doi (DE-627)DOAJ003850730 (DE-599)DOAJ3e2ac5ed6ba44ace84bc5a36caafafc3 DE-627 ger DE-627 rakwb eng QA1-939 Kantaphon Kuhapatanakul verfasserin aut The Fibonacci p-numbers and Pascal’s triangle 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pascal’s triangle is the most famous of all number arrays full of patterns and surprises. It is well known that the Fibonacci numbers can be read from Pascal’s triangle. In this paper, we consider the Fibonacci p-numbers and derive an explicit formula for these numbers by using some properties of the Pascal’s triangle. We also introduce the companion matrix of the Fibonacci p-numbers and give some identities of the Fibonacci p-numbers by using some properties of our matrix. Fibonacci p-numbers Pascal’s triangle Fibonacci p-matrix Fibonacci p-triangle Mathematics In Cogent Mathematics Taylor & Francis Group, 2015 3(2016), 1 (DE-627)823090817 (DE-600)2818161-X 23311835 nnns volume:3 year:2016 number:1 https://doi.org/10.1080/23311835.2016.1264176 kostenfrei https://doaj.org/article/3e2ac5ed6ba44ace84bc5a36caafafc3 kostenfrei http://dx.doi.org/10.1080/23311835.2016.1264176 kostenfrei https://doaj.org/toc/2331-1835 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2016 1 |
language |
English |
source |
In Cogent Mathematics 3(2016), 1 volume:3 year:2016 number:1 |
sourceStr |
In Cogent Mathematics 3(2016), 1 volume:3 year:2016 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fibonacci p-numbers Pascal’s triangle Fibonacci p-matrix Fibonacci p-triangle Mathematics |
isfreeaccess_bool |
true |
container_title |
Cogent Mathematics |
authorswithroles_txt_mv |
Kantaphon Kuhapatanakul @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
823090817 |
id |
DOAJ003850730 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003850730</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503065456.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/23311835.2016.1264176</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003850730</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3e2ac5ed6ba44ace84bc5a36caafafc3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kantaphon Kuhapatanakul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Fibonacci p-numbers and Pascal’s triangle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pascal’s triangle is the most famous of all number arrays full of patterns and surprises. It is well known that the Fibonacci numbers can be read from Pascal’s triangle. In this paper, we consider the Fibonacci p-numbers and derive an explicit formula for these numbers by using some properties of the Pascal’s triangle. We also introduce the companion matrix of the Fibonacci p-numbers and give some identities of the Fibonacci p-numbers by using some properties of our matrix.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fibonacci p-numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pascal’s triangle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fibonacci p-matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fibonacci p-triangle</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cogent Mathematics</subfield><subfield code="d">Taylor & Francis Group, 2015</subfield><subfield code="g">3(2016), 1</subfield><subfield code="w">(DE-627)823090817</subfield><subfield code="w">(DE-600)2818161-X</subfield><subfield code="x">23311835</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/23311835.2016.1264176</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3e2ac5ed6ba44ace84bc5a36caafafc3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/23311835.2016.1264176</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2331-1835</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Kantaphon Kuhapatanakul |
spellingShingle |
Kantaphon Kuhapatanakul misc QA1-939 misc Fibonacci p-numbers misc Pascal’s triangle misc Fibonacci p-matrix misc Fibonacci p-triangle misc Mathematics The Fibonacci p-numbers and Pascal’s triangle |
authorStr |
Kantaphon Kuhapatanakul |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)823090817 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
23311835 |
topic_title |
QA1-939 The Fibonacci p-numbers and Pascal’s triangle Fibonacci p-numbers Pascal’s triangle Fibonacci p-matrix Fibonacci p-triangle |
topic |
misc QA1-939 misc Fibonacci p-numbers misc Pascal’s triangle misc Fibonacci p-matrix misc Fibonacci p-triangle misc Mathematics |
topic_unstemmed |
misc QA1-939 misc Fibonacci p-numbers misc Pascal’s triangle misc Fibonacci p-matrix misc Fibonacci p-triangle misc Mathematics |
topic_browse |
misc QA1-939 misc Fibonacci p-numbers misc Pascal’s triangle misc Fibonacci p-matrix misc Fibonacci p-triangle misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cogent Mathematics |
hierarchy_parent_id |
823090817 |
hierarchy_top_title |
Cogent Mathematics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)823090817 (DE-600)2818161-X |
title |
The Fibonacci p-numbers and Pascal’s triangle |
ctrlnum |
(DE-627)DOAJ003850730 (DE-599)DOAJ3e2ac5ed6ba44ace84bc5a36caafafc3 |
title_full |
The Fibonacci p-numbers and Pascal’s triangle |
author_sort |
Kantaphon Kuhapatanakul |
journal |
Cogent Mathematics |
journalStr |
Cogent Mathematics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Kantaphon Kuhapatanakul |
container_volume |
3 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Kantaphon Kuhapatanakul |
doi_str_mv |
10.1080/23311835.2016.1264176 |
title_sort |
fibonacci p-numbers and pascal’s triangle |
callnumber |
QA1-939 |
title_auth |
The Fibonacci p-numbers and Pascal’s triangle |
abstract |
Pascal’s triangle is the most famous of all number arrays full of patterns and surprises. It is well known that the Fibonacci numbers can be read from Pascal’s triangle. In this paper, we consider the Fibonacci p-numbers and derive an explicit formula for these numbers by using some properties of the Pascal’s triangle. We also introduce the companion matrix of the Fibonacci p-numbers and give some identities of the Fibonacci p-numbers by using some properties of our matrix. |
abstractGer |
Pascal’s triangle is the most famous of all number arrays full of patterns and surprises. It is well known that the Fibonacci numbers can be read from Pascal’s triangle. In this paper, we consider the Fibonacci p-numbers and derive an explicit formula for these numbers by using some properties of the Pascal’s triangle. We also introduce the companion matrix of the Fibonacci p-numbers and give some identities of the Fibonacci p-numbers by using some properties of our matrix. |
abstract_unstemmed |
Pascal’s triangle is the most famous of all number arrays full of patterns and surprises. It is well known that the Fibonacci numbers can be read from Pascal’s triangle. In this paper, we consider the Fibonacci p-numbers and derive an explicit formula for these numbers by using some properties of the Pascal’s triangle. We also introduce the companion matrix of the Fibonacci p-numbers and give some identities of the Fibonacci p-numbers by using some properties of our matrix. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The Fibonacci p-numbers and Pascal’s triangle |
url |
https://doi.org/10.1080/23311835.2016.1264176 https://doaj.org/article/3e2ac5ed6ba44ace84bc5a36caafafc3 http://dx.doi.org/10.1080/23311835.2016.1264176 https://doaj.org/toc/2331-1835 |
remote_bool |
true |
ppnlink |
823090817 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/23311835.2016.1264176 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T20:28:47.699Z |
_version_ |
1803591119224700928 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003850730</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503065456.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/23311835.2016.1264176</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003850730</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3e2ac5ed6ba44ace84bc5a36caafafc3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kantaphon Kuhapatanakul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Fibonacci p-numbers and Pascal’s triangle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pascal’s triangle is the most famous of all number arrays full of patterns and surprises. It is well known that the Fibonacci numbers can be read from Pascal’s triangle. In this paper, we consider the Fibonacci p-numbers and derive an explicit formula for these numbers by using some properties of the Pascal’s triangle. We also introduce the companion matrix of the Fibonacci p-numbers and give some identities of the Fibonacci p-numbers by using some properties of our matrix.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fibonacci p-numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pascal’s triangle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fibonacci p-matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fibonacci p-triangle</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cogent Mathematics</subfield><subfield code="d">Taylor & Francis Group, 2015</subfield><subfield code="g">3(2016), 1</subfield><subfield code="w">(DE-627)823090817</subfield><subfield code="w">(DE-600)2818161-X</subfield><subfield code="x">23311835</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/23311835.2016.1264176</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3e2ac5ed6ba44ace84bc5a36caafafc3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/23311835.2016.1264176</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2331-1835</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.4025126 |