Simulation equatorial plasma bubbles started from plasma clouds
Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articl...
Ausführliche Beschreibung
Autor*in: |
Nikolay M Kashchenko [verfasserIn] Sergey A Ishanov [verfasserIn] Sergey V Matsievsky [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Russisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Компьютерные исследования и моделирование - Institute of Computer Science, 2018, 11(2019), 3, Seite 463-476 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2019 ; number:3 ; pages:463-476 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.20537/2076-7633-2019-11-3-463-476 |
---|
Katalog-ID: |
DOAJ003904547 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ003904547 | ||
003 | DE-627 | ||
005 | 20230309181015.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2019 xx |||||o 00| ||rus c | ||
024 | 7 | |a 10.20537/2076-7633-2019-11-3-463-476 |2 doi | |
035 | |a (DE-627)DOAJ003904547 | ||
035 | |a (DE-599)DOAJ088fd9606406483f8b969d222a219ad6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a rus | ||
050 | 0 | |a T57-57.97 | |
050 | 0 | |a QA1-939 | |
100 | 0 | |a Nikolay M Kashchenko |e verfasserin |4 aut | |
245 | 1 | 0 | |a Simulation equatorial plasma bubbles started from plasma clouds |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable. A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000-7000 c for the Earth equatorial ionosphere. Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere. Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors. | ||
650 | 4 | |a ionosphere | |
650 | 4 | |a mathematical modeling | |
650 | 4 | |a numerical simulating | |
650 | 4 | |a Rayleigh–Taylor instability | |
650 | 4 | |a initial irregularity | |
650 | 4 | |a equatorial plasma bubble | |
650 | 4 | |a initial plasma cloud | |
650 | 4 | |a multiple plasma bubbles | |
653 | 0 | |a Applied mathematics. Quantitative methods | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Sergey A Ishanov |e verfasserin |4 aut | |
700 | 0 | |a Sergey V Matsievsky |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Компьютерные исследования и моделирование |d Institute of Computer Science, 2018 |g 11(2019), 3, Seite 463-476 |w (DE-627)1035915022 |x 20776853 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2019 |g number:3 |g pages:463-476 |
856 | 4 | 0 | |u https://doi.org/10.20537/2076-7633-2019-11-3-463-476 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/088fd9606406483f8b969d222a219ad6 |z kostenfrei |
856 | 4 | 0 | |u http://crm.ics.org.ru/uploads/crmissues/crm_2019_3/2019_03_08.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-7633 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2077-6853 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2019 |e 3 |h 463-476 |
author_variant |
n m k nmk s a i sai s v m svm |
---|---|
matchkey_str |
article:20776853:2019----::iuainqaoillsaubesatdr |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
T |
publishDate |
2019 |
allfields |
10.20537/2076-7633-2019-11-3-463-476 doi (DE-627)DOAJ003904547 (DE-599)DOAJ088fd9606406483f8b969d222a219ad6 DE-627 ger DE-627 rakwb rus T57-57.97 QA1-939 Nikolay M Kashchenko verfasserin aut Simulation equatorial plasma bubbles started from plasma clouds 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable. A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000-7000 c for the Earth equatorial ionosphere. Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere. Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors. ionosphere mathematical modeling numerical simulating Rayleigh–Taylor instability initial irregularity equatorial plasma bubble initial plasma cloud multiple plasma bubbles Applied mathematics. Quantitative methods Mathematics Sergey A Ishanov verfasserin aut Sergey V Matsievsky verfasserin aut In Компьютерные исследования и моделирование Institute of Computer Science, 2018 11(2019), 3, Seite 463-476 (DE-627)1035915022 20776853 nnns volume:11 year:2019 number:3 pages:463-476 https://doi.org/10.20537/2076-7633-2019-11-3-463-476 kostenfrei https://doaj.org/article/088fd9606406483f8b969d222a219ad6 kostenfrei http://crm.ics.org.ru/uploads/crmissues/crm_2019_3/2019_03_08.pdf kostenfrei https://doaj.org/toc/2076-7633 Journal toc kostenfrei https://doaj.org/toc/2077-6853 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 3 463-476 |
spelling |
10.20537/2076-7633-2019-11-3-463-476 doi (DE-627)DOAJ003904547 (DE-599)DOAJ088fd9606406483f8b969d222a219ad6 DE-627 ger DE-627 rakwb rus T57-57.97 QA1-939 Nikolay M Kashchenko verfasserin aut Simulation equatorial plasma bubbles started from plasma clouds 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable. A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000-7000 c for the Earth equatorial ionosphere. Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere. Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors. ionosphere mathematical modeling numerical simulating Rayleigh–Taylor instability initial irregularity equatorial plasma bubble initial plasma cloud multiple plasma bubbles Applied mathematics. Quantitative methods Mathematics Sergey A Ishanov verfasserin aut Sergey V Matsievsky verfasserin aut In Компьютерные исследования и моделирование Institute of Computer Science, 2018 11(2019), 3, Seite 463-476 (DE-627)1035915022 20776853 nnns volume:11 year:2019 number:3 pages:463-476 https://doi.org/10.20537/2076-7633-2019-11-3-463-476 kostenfrei https://doaj.org/article/088fd9606406483f8b969d222a219ad6 kostenfrei http://crm.ics.org.ru/uploads/crmissues/crm_2019_3/2019_03_08.pdf kostenfrei https://doaj.org/toc/2076-7633 Journal toc kostenfrei https://doaj.org/toc/2077-6853 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 3 463-476 |
allfields_unstemmed |
10.20537/2076-7633-2019-11-3-463-476 doi (DE-627)DOAJ003904547 (DE-599)DOAJ088fd9606406483f8b969d222a219ad6 DE-627 ger DE-627 rakwb rus T57-57.97 QA1-939 Nikolay M Kashchenko verfasserin aut Simulation equatorial plasma bubbles started from plasma clouds 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable. A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000-7000 c for the Earth equatorial ionosphere. Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere. Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors. ionosphere mathematical modeling numerical simulating Rayleigh–Taylor instability initial irregularity equatorial plasma bubble initial plasma cloud multiple plasma bubbles Applied mathematics. Quantitative methods Mathematics Sergey A Ishanov verfasserin aut Sergey V Matsievsky verfasserin aut In Компьютерные исследования и моделирование Institute of Computer Science, 2018 11(2019), 3, Seite 463-476 (DE-627)1035915022 20776853 nnns volume:11 year:2019 number:3 pages:463-476 https://doi.org/10.20537/2076-7633-2019-11-3-463-476 kostenfrei https://doaj.org/article/088fd9606406483f8b969d222a219ad6 kostenfrei http://crm.ics.org.ru/uploads/crmissues/crm_2019_3/2019_03_08.pdf kostenfrei https://doaj.org/toc/2076-7633 Journal toc kostenfrei https://doaj.org/toc/2077-6853 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 3 463-476 |
allfieldsGer |
10.20537/2076-7633-2019-11-3-463-476 doi (DE-627)DOAJ003904547 (DE-599)DOAJ088fd9606406483f8b969d222a219ad6 DE-627 ger DE-627 rakwb rus T57-57.97 QA1-939 Nikolay M Kashchenko verfasserin aut Simulation equatorial plasma bubbles started from plasma clouds 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable. A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000-7000 c for the Earth equatorial ionosphere. Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere. Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors. ionosphere mathematical modeling numerical simulating Rayleigh–Taylor instability initial irregularity equatorial plasma bubble initial plasma cloud multiple plasma bubbles Applied mathematics. Quantitative methods Mathematics Sergey A Ishanov verfasserin aut Sergey V Matsievsky verfasserin aut In Компьютерные исследования и моделирование Institute of Computer Science, 2018 11(2019), 3, Seite 463-476 (DE-627)1035915022 20776853 nnns volume:11 year:2019 number:3 pages:463-476 https://doi.org/10.20537/2076-7633-2019-11-3-463-476 kostenfrei https://doaj.org/article/088fd9606406483f8b969d222a219ad6 kostenfrei http://crm.ics.org.ru/uploads/crmissues/crm_2019_3/2019_03_08.pdf kostenfrei https://doaj.org/toc/2076-7633 Journal toc kostenfrei https://doaj.org/toc/2077-6853 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 3 463-476 |
allfieldsSound |
10.20537/2076-7633-2019-11-3-463-476 doi (DE-627)DOAJ003904547 (DE-599)DOAJ088fd9606406483f8b969d222a219ad6 DE-627 ger DE-627 rakwb rus T57-57.97 QA1-939 Nikolay M Kashchenko verfasserin aut Simulation equatorial plasma bubbles started from plasma clouds 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable. A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000-7000 c for the Earth equatorial ionosphere. Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere. Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors. ionosphere mathematical modeling numerical simulating Rayleigh–Taylor instability initial irregularity equatorial plasma bubble initial plasma cloud multiple plasma bubbles Applied mathematics. Quantitative methods Mathematics Sergey A Ishanov verfasserin aut Sergey V Matsievsky verfasserin aut In Компьютерные исследования и моделирование Institute of Computer Science, 2018 11(2019), 3, Seite 463-476 (DE-627)1035915022 20776853 nnns volume:11 year:2019 number:3 pages:463-476 https://doi.org/10.20537/2076-7633-2019-11-3-463-476 kostenfrei https://doaj.org/article/088fd9606406483f8b969d222a219ad6 kostenfrei http://crm.ics.org.ru/uploads/crmissues/crm_2019_3/2019_03_08.pdf kostenfrei https://doaj.org/toc/2076-7633 Journal toc kostenfrei https://doaj.org/toc/2077-6853 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 3 463-476 |
language |
Russian |
source |
In Компьютерные исследования и моделирование 11(2019), 3, Seite 463-476 volume:11 year:2019 number:3 pages:463-476 |
sourceStr |
In Компьютерные исследования и моделирование 11(2019), 3, Seite 463-476 volume:11 year:2019 number:3 pages:463-476 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ionosphere mathematical modeling numerical simulating Rayleigh–Taylor instability initial irregularity equatorial plasma bubble initial plasma cloud multiple plasma bubbles Applied mathematics. Quantitative methods Mathematics |
isfreeaccess_bool |
true |
container_title |
Компьютерные исследования и моделирование |
authorswithroles_txt_mv |
Nikolay M Kashchenko @@aut@@ Sergey A Ishanov @@aut@@ Sergey V Matsievsky @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
1035915022 |
id |
DOAJ003904547 |
language_de |
russisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003904547</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309181015.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||rus c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.20537/2076-7633-2019-11-3-463-476</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003904547</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ088fd9606406483f8b969d222a219ad6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T57-57.97</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nikolay M Kashchenko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simulation equatorial plasma bubbles started from plasma clouds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable. A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000-7000 c for the Earth equatorial ionosphere. Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere. Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ionosphere</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mathematical modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rayleigh–Taylor instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">initial irregularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">equatorial plasma bubble</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">initial plasma cloud</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple plasma bubbles</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied mathematics. Quantitative methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sergey A Ishanov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sergey V Matsievsky</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Компьютерные исследования и моделирование</subfield><subfield code="d">Institute of Computer Science, 2018</subfield><subfield code="g">11(2019), 3, Seite 463-476</subfield><subfield code="w">(DE-627)1035915022</subfield><subfield code="x">20776853</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:463-476</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.20537/2076-7633-2019-11-3-463-476</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/088fd9606406483f8b969d222a219ad6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://crm.ics.org.ru/uploads/crmissues/crm_2019_3/2019_03_08.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-7633</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-6853</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="h">463-476</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Nikolay M Kashchenko |
spellingShingle |
Nikolay M Kashchenko misc T57-57.97 misc QA1-939 misc ionosphere misc mathematical modeling misc numerical simulating misc Rayleigh–Taylor instability misc initial irregularity misc equatorial plasma bubble misc initial plasma cloud misc multiple plasma bubbles misc Applied mathematics. Quantitative methods misc Mathematics Simulation equatorial plasma bubbles started from plasma clouds |
authorStr |
Nikolay M Kashchenko |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1035915022 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T57-57 |
illustrated |
Not Illustrated |
issn |
20776853 |
topic_title |
T57-57.97 QA1-939 Simulation equatorial plasma bubbles started from plasma clouds ionosphere mathematical modeling numerical simulating Rayleigh–Taylor instability initial irregularity equatorial plasma bubble initial plasma cloud multiple plasma bubbles |
topic |
misc T57-57.97 misc QA1-939 misc ionosphere misc mathematical modeling misc numerical simulating misc Rayleigh–Taylor instability misc initial irregularity misc equatorial plasma bubble misc initial plasma cloud misc multiple plasma bubbles misc Applied mathematics. Quantitative methods misc Mathematics |
topic_unstemmed |
misc T57-57.97 misc QA1-939 misc ionosphere misc mathematical modeling misc numerical simulating misc Rayleigh–Taylor instability misc initial irregularity misc equatorial plasma bubble misc initial plasma cloud misc multiple plasma bubbles misc Applied mathematics. Quantitative methods misc Mathematics |
topic_browse |
misc T57-57.97 misc QA1-939 misc ionosphere misc mathematical modeling misc numerical simulating misc Rayleigh–Taylor instability misc initial irregularity misc equatorial plasma bubble misc initial plasma cloud misc multiple plasma bubbles misc Applied mathematics. Quantitative methods misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Компьютерные исследования и моделирование |
hierarchy_parent_id |
1035915022 |
hierarchy_top_title |
Компьютерные исследования и моделирование |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1035915022 |
title |
Simulation equatorial plasma bubbles started from plasma clouds |
ctrlnum |
(DE-627)DOAJ003904547 (DE-599)DOAJ088fd9606406483f8b969d222a219ad6 |
title_full |
Simulation equatorial plasma bubbles started from plasma clouds |
author_sort |
Nikolay M Kashchenko |
journal |
Компьютерные исследования и моделирование |
journalStr |
Компьютерные исследования и моделирование |
callnumber-first-code |
T |
lang_code |
rus |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
463 |
author_browse |
Nikolay M Kashchenko Sergey A Ishanov Sergey V Matsievsky |
container_volume |
11 |
class |
T57-57.97 QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Nikolay M Kashchenko |
doi_str_mv |
10.20537/2076-7633-2019-11-3-463-476 |
author2-role |
verfasserin |
title_sort |
simulation equatorial plasma bubbles started from plasma clouds |
callnumber |
T57-57.97 |
title_auth |
Simulation equatorial plasma bubbles started from plasma clouds |
abstract |
Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable. A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000-7000 c for the Earth equatorial ionosphere. Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere. Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors. |
abstractGer |
Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable. A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000-7000 c for the Earth equatorial ionosphere. Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere. Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors. |
abstract_unstemmed |
Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable. A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000-7000 c for the Earth equatorial ionosphere. Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere. Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Simulation equatorial plasma bubbles started from plasma clouds |
url |
https://doi.org/10.20537/2076-7633-2019-11-3-463-476 https://doaj.org/article/088fd9606406483f8b969d222a219ad6 http://crm.ics.org.ru/uploads/crmissues/crm_2019_3/2019_03_08.pdf https://doaj.org/toc/2076-7633 https://doaj.org/toc/2077-6853 |
remote_bool |
true |
author2 |
Sergey A Ishanov Sergey V Matsievsky |
author2Str |
Sergey A Ishanov Sergey V Matsievsky |
ppnlink |
1035915022 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.20537/2076-7633-2019-11-3-463-476 |
callnumber-a |
T57-57.97 |
up_date |
2024-07-03T20:48:12.995Z |
_version_ |
1803592341122973696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003904547</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309181015.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||rus c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.20537/2076-7633-2019-11-3-463-476</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003904547</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ088fd9606406483f8b969d222a219ad6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T57-57.97</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nikolay M Kashchenko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simulation equatorial plasma bubbles started from plasma clouds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable. A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000-7000 c for the Earth equatorial ionosphere. Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere. Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ionosphere</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mathematical modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rayleigh–Taylor instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">initial irregularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">equatorial plasma bubble</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">initial plasma cloud</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple plasma bubbles</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied mathematics. Quantitative methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sergey A Ishanov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sergey V Matsievsky</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Компьютерные исследования и моделирование</subfield><subfield code="d">Institute of Computer Science, 2018</subfield><subfield code="g">11(2019), 3, Seite 463-476</subfield><subfield code="w">(DE-627)1035915022</subfield><subfield code="x">20776853</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:463-476</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.20537/2076-7633-2019-11-3-463-476</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/088fd9606406483f8b969d222a219ad6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://crm.ics.org.ru/uploads/crmissues/crm_2019_3/2019_03_08.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-7633</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-6853</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="h">463-476</subfield></datafield></record></collection>
|
score |
7.401202 |