Poisson gauge theory
Abstract The Poisson gauge algebra is a semi-classical limit of complete non- commutative gauge algebra. In the present work we formulate the Poisson gauge theory which is a dynamical field theoretical model having the Poisson gauge algebra as a corresponding algebra of gauge symmetries. The propose...
Ausführliche Beschreibung
Autor*in: |
Vladislav G. Kupriyanov [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of High Energy Physics - SpringerOpen, 2016, (2021), 9, Seite 26 |
---|---|
Übergeordnetes Werk: |
year:2021 ; number:9 ; pages:26 |
Links: |
---|
DOI / URN: |
10.1007/JHEP09(2021)016 |
---|
Katalog-ID: |
DOAJ003996301 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ003996301 | ||
003 | DE-627 | ||
005 | 20230309181514.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/JHEP09(2021)016 |2 doi | |
035 | |a (DE-627)DOAJ003996301 | ||
035 | |a (DE-599)DOAJ06a3fd3906464b28aadc8ee55a30a28d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC770-798 | |
100 | 0 | |a Vladislav G. Kupriyanov |e verfasserin |4 aut | |
245 | 1 | 0 | |a Poisson gauge theory |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The Poisson gauge algebra is a semi-classical limit of complete non- commutative gauge algebra. In the present work we formulate the Poisson gauge theory which is a dynamical field theoretical model having the Poisson gauge algebra as a corresponding algebra of gauge symmetries. The proposed model is designed to investigate the semi-classical features of the full non-commutative gauge theory with coordinate dependent non-commutativity Θ ab (x), especially whose with a non-constant rank. We derive the expression for the covariant derivative of matter field. The commutator relation for the covariant derivatives defines the Poisson field strength which is covariant under the Poisson gauge transformations and reproduces the standard U(1) field strength in the commutative limit. We derive the corresponding Bianchi identities. The field equations for the gauge and the matter fields are obtained from the gauge invariant action. We consider different examples of linear in coordinates Poisson structures Θ ab (x), as well as non-linear ones, and obtain explicit expressions for all proposed constructions. Our model is unique up to invertible field redefinitions and coordinate transformations. | ||
650 | 4 | |a Gauge Symmetry | |
650 | 4 | |a Non-Commutative Geometry | |
653 | 0 | |a Nuclear and particle physics. Atomic energy. Radioactivity | |
773 | 0 | 8 | |i In |t Journal of High Energy Physics |d SpringerOpen, 2016 |g (2021), 9, Seite 26 |w (DE-627)320910571 |w (DE-600)2027350-2 |x 10298479 |7 nnns |
773 | 1 | 8 | |g year:2021 |g number:9 |g pages:26 |
856 | 4 | 0 | |u https://doi.org/10.1007/JHEP09(2021)016 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/06a3fd3906464b28aadc8ee55a30a28d |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1007/JHEP09(2021)016 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1029-8479 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2021 |e 9 |h 26 |
author_variant |
v g k vgk |
---|---|
matchkey_str |
article:10298479:2021----::osogue |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QC |
publishDate |
2021 |
allfields |
10.1007/JHEP09(2021)016 doi (DE-627)DOAJ003996301 (DE-599)DOAJ06a3fd3906464b28aadc8ee55a30a28d DE-627 ger DE-627 rakwb eng QC770-798 Vladislav G. Kupriyanov verfasserin aut Poisson gauge theory 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Poisson gauge algebra is a semi-classical limit of complete non- commutative gauge algebra. In the present work we formulate the Poisson gauge theory which is a dynamical field theoretical model having the Poisson gauge algebra as a corresponding algebra of gauge symmetries. The proposed model is designed to investigate the semi-classical features of the full non-commutative gauge theory with coordinate dependent non-commutativity Θ ab (x), especially whose with a non-constant rank. We derive the expression for the covariant derivative of matter field. The commutator relation for the covariant derivatives defines the Poisson field strength which is covariant under the Poisson gauge transformations and reproduces the standard U(1) field strength in the commutative limit. We derive the corresponding Bianchi identities. The field equations for the gauge and the matter fields are obtained from the gauge invariant action. We consider different examples of linear in coordinates Poisson structures Θ ab (x), as well as non-linear ones, and obtain explicit expressions for all proposed constructions. Our model is unique up to invertible field redefinitions and coordinate transformations. Gauge Symmetry Non-Commutative Geometry Nuclear and particle physics. Atomic energy. Radioactivity In Journal of High Energy Physics SpringerOpen, 2016 (2021), 9, Seite 26 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2021 number:9 pages:26 https://doi.org/10.1007/JHEP09(2021)016 kostenfrei https://doaj.org/article/06a3fd3906464b28aadc8ee55a30a28d kostenfrei https://doi.org/10.1007/JHEP09(2021)016 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 9 26 |
spelling |
10.1007/JHEP09(2021)016 doi (DE-627)DOAJ003996301 (DE-599)DOAJ06a3fd3906464b28aadc8ee55a30a28d DE-627 ger DE-627 rakwb eng QC770-798 Vladislav G. Kupriyanov verfasserin aut Poisson gauge theory 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Poisson gauge algebra is a semi-classical limit of complete non- commutative gauge algebra. In the present work we formulate the Poisson gauge theory which is a dynamical field theoretical model having the Poisson gauge algebra as a corresponding algebra of gauge symmetries. The proposed model is designed to investigate the semi-classical features of the full non-commutative gauge theory with coordinate dependent non-commutativity Θ ab (x), especially whose with a non-constant rank. We derive the expression for the covariant derivative of matter field. The commutator relation for the covariant derivatives defines the Poisson field strength which is covariant under the Poisson gauge transformations and reproduces the standard U(1) field strength in the commutative limit. We derive the corresponding Bianchi identities. The field equations for the gauge and the matter fields are obtained from the gauge invariant action. We consider different examples of linear in coordinates Poisson structures Θ ab (x), as well as non-linear ones, and obtain explicit expressions for all proposed constructions. Our model is unique up to invertible field redefinitions and coordinate transformations. Gauge Symmetry Non-Commutative Geometry Nuclear and particle physics. Atomic energy. Radioactivity In Journal of High Energy Physics SpringerOpen, 2016 (2021), 9, Seite 26 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2021 number:9 pages:26 https://doi.org/10.1007/JHEP09(2021)016 kostenfrei https://doaj.org/article/06a3fd3906464b28aadc8ee55a30a28d kostenfrei https://doi.org/10.1007/JHEP09(2021)016 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 9 26 |
allfields_unstemmed |
10.1007/JHEP09(2021)016 doi (DE-627)DOAJ003996301 (DE-599)DOAJ06a3fd3906464b28aadc8ee55a30a28d DE-627 ger DE-627 rakwb eng QC770-798 Vladislav G. Kupriyanov verfasserin aut Poisson gauge theory 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Poisson gauge algebra is a semi-classical limit of complete non- commutative gauge algebra. In the present work we formulate the Poisson gauge theory which is a dynamical field theoretical model having the Poisson gauge algebra as a corresponding algebra of gauge symmetries. The proposed model is designed to investigate the semi-classical features of the full non-commutative gauge theory with coordinate dependent non-commutativity Θ ab (x), especially whose with a non-constant rank. We derive the expression for the covariant derivative of matter field. The commutator relation for the covariant derivatives defines the Poisson field strength which is covariant under the Poisson gauge transformations and reproduces the standard U(1) field strength in the commutative limit. We derive the corresponding Bianchi identities. The field equations for the gauge and the matter fields are obtained from the gauge invariant action. We consider different examples of linear in coordinates Poisson structures Θ ab (x), as well as non-linear ones, and obtain explicit expressions for all proposed constructions. Our model is unique up to invertible field redefinitions and coordinate transformations. Gauge Symmetry Non-Commutative Geometry Nuclear and particle physics. Atomic energy. Radioactivity In Journal of High Energy Physics SpringerOpen, 2016 (2021), 9, Seite 26 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2021 number:9 pages:26 https://doi.org/10.1007/JHEP09(2021)016 kostenfrei https://doaj.org/article/06a3fd3906464b28aadc8ee55a30a28d kostenfrei https://doi.org/10.1007/JHEP09(2021)016 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 9 26 |
allfieldsGer |
10.1007/JHEP09(2021)016 doi (DE-627)DOAJ003996301 (DE-599)DOAJ06a3fd3906464b28aadc8ee55a30a28d DE-627 ger DE-627 rakwb eng QC770-798 Vladislav G. Kupriyanov verfasserin aut Poisson gauge theory 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Poisson gauge algebra is a semi-classical limit of complete non- commutative gauge algebra. In the present work we formulate the Poisson gauge theory which is a dynamical field theoretical model having the Poisson gauge algebra as a corresponding algebra of gauge symmetries. The proposed model is designed to investigate the semi-classical features of the full non-commutative gauge theory with coordinate dependent non-commutativity Θ ab (x), especially whose with a non-constant rank. We derive the expression for the covariant derivative of matter field. The commutator relation for the covariant derivatives defines the Poisson field strength which is covariant under the Poisson gauge transformations and reproduces the standard U(1) field strength in the commutative limit. We derive the corresponding Bianchi identities. The field equations for the gauge and the matter fields are obtained from the gauge invariant action. We consider different examples of linear in coordinates Poisson structures Θ ab (x), as well as non-linear ones, and obtain explicit expressions for all proposed constructions. Our model is unique up to invertible field redefinitions and coordinate transformations. Gauge Symmetry Non-Commutative Geometry Nuclear and particle physics. Atomic energy. Radioactivity In Journal of High Energy Physics SpringerOpen, 2016 (2021), 9, Seite 26 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2021 number:9 pages:26 https://doi.org/10.1007/JHEP09(2021)016 kostenfrei https://doaj.org/article/06a3fd3906464b28aadc8ee55a30a28d kostenfrei https://doi.org/10.1007/JHEP09(2021)016 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 9 26 |
allfieldsSound |
10.1007/JHEP09(2021)016 doi (DE-627)DOAJ003996301 (DE-599)DOAJ06a3fd3906464b28aadc8ee55a30a28d DE-627 ger DE-627 rakwb eng QC770-798 Vladislav G. Kupriyanov verfasserin aut Poisson gauge theory 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Poisson gauge algebra is a semi-classical limit of complete non- commutative gauge algebra. In the present work we formulate the Poisson gauge theory which is a dynamical field theoretical model having the Poisson gauge algebra as a corresponding algebra of gauge symmetries. The proposed model is designed to investigate the semi-classical features of the full non-commutative gauge theory with coordinate dependent non-commutativity Θ ab (x), especially whose with a non-constant rank. We derive the expression for the covariant derivative of matter field. The commutator relation for the covariant derivatives defines the Poisson field strength which is covariant under the Poisson gauge transformations and reproduces the standard U(1) field strength in the commutative limit. We derive the corresponding Bianchi identities. The field equations for the gauge and the matter fields are obtained from the gauge invariant action. We consider different examples of linear in coordinates Poisson structures Θ ab (x), as well as non-linear ones, and obtain explicit expressions for all proposed constructions. Our model is unique up to invertible field redefinitions and coordinate transformations. Gauge Symmetry Non-Commutative Geometry Nuclear and particle physics. Atomic energy. Radioactivity In Journal of High Energy Physics SpringerOpen, 2016 (2021), 9, Seite 26 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2021 number:9 pages:26 https://doi.org/10.1007/JHEP09(2021)016 kostenfrei https://doaj.org/article/06a3fd3906464b28aadc8ee55a30a28d kostenfrei https://doi.org/10.1007/JHEP09(2021)016 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 9 26 |
language |
English |
source |
In Journal of High Energy Physics (2021), 9, Seite 26 year:2021 number:9 pages:26 |
sourceStr |
In Journal of High Energy Physics (2021), 9, Seite 26 year:2021 number:9 pages:26 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Gauge Symmetry Non-Commutative Geometry Nuclear and particle physics. Atomic energy. Radioactivity |
isfreeaccess_bool |
true |
container_title |
Journal of High Energy Physics |
authorswithroles_txt_mv |
Vladislav G. Kupriyanov @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320910571 |
id |
DOAJ003996301 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003996301</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309181514.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP09(2021)016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003996301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ06a3fd3906464b28aadc8ee55a30a28d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Vladislav G. Kupriyanov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Poisson gauge theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Poisson gauge algebra is a semi-classical limit of complete non- commutative gauge algebra. In the present work we formulate the Poisson gauge theory which is a dynamical field theoretical model having the Poisson gauge algebra as a corresponding algebra of gauge symmetries. The proposed model is designed to investigate the semi-classical features of the full non-commutative gauge theory with coordinate dependent non-commutativity Θ ab (x), especially whose with a non-constant rank. We derive the expression for the covariant derivative of matter field. The commutator relation for the covariant derivatives defines the Poisson field strength which is covariant under the Poisson gauge transformations and reproduces the standard U(1) field strength in the commutative limit. We derive the corresponding Bianchi identities. The field equations for the gauge and the matter fields are obtained from the gauge invariant action. We consider different examples of linear in coordinates Poisson structures Θ ab (x), as well as non-linear ones, and obtain explicit expressions for all proposed constructions. Our model is unique up to invertible field redefinitions and coordinate transformations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gauge Symmetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-Commutative Geometry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear and particle physics. Atomic energy. Radioactivity</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of High Energy Physics</subfield><subfield code="d">SpringerOpen, 2016</subfield><subfield code="g">(2021), 9, Seite 26</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">10298479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2021</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:26</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/JHEP09(2021)016</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/06a3fd3906464b28aadc8ee55a30a28d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/JHEP09(2021)016</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1029-8479</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2021</subfield><subfield code="e">9</subfield><subfield code="h">26</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Vladislav G. Kupriyanov |
spellingShingle |
Vladislav G. Kupriyanov misc QC770-798 misc Gauge Symmetry misc Non-Commutative Geometry misc Nuclear and particle physics. Atomic energy. Radioactivity Poisson gauge theory |
authorStr |
Vladislav G. Kupriyanov |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320910571 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC770-798 |
illustrated |
Not Illustrated |
issn |
10298479 |
topic_title |
QC770-798 Poisson gauge theory Gauge Symmetry Non-Commutative Geometry |
topic |
misc QC770-798 misc Gauge Symmetry misc Non-Commutative Geometry misc Nuclear and particle physics. Atomic energy. Radioactivity |
topic_unstemmed |
misc QC770-798 misc Gauge Symmetry misc Non-Commutative Geometry misc Nuclear and particle physics. Atomic energy. Radioactivity |
topic_browse |
misc QC770-798 misc Gauge Symmetry misc Non-Commutative Geometry misc Nuclear and particle physics. Atomic energy. Radioactivity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of High Energy Physics |
hierarchy_parent_id |
320910571 |
hierarchy_top_title |
Journal of High Energy Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320910571 (DE-600)2027350-2 |
title |
Poisson gauge theory |
ctrlnum |
(DE-627)DOAJ003996301 (DE-599)DOAJ06a3fd3906464b28aadc8ee55a30a28d |
title_full |
Poisson gauge theory |
author_sort |
Vladislav G. Kupriyanov |
journal |
Journal of High Energy Physics |
journalStr |
Journal of High Energy Physics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
26 |
author_browse |
Vladislav G. Kupriyanov |
class |
QC770-798 |
format_se |
Elektronische Aufsätze |
author-letter |
Vladislav G. Kupriyanov |
doi_str_mv |
10.1007/JHEP09(2021)016 |
title_sort |
poisson gauge theory |
callnumber |
QC770-798 |
title_auth |
Poisson gauge theory |
abstract |
Abstract The Poisson gauge algebra is a semi-classical limit of complete non- commutative gauge algebra. In the present work we formulate the Poisson gauge theory which is a dynamical field theoretical model having the Poisson gauge algebra as a corresponding algebra of gauge symmetries. The proposed model is designed to investigate the semi-classical features of the full non-commutative gauge theory with coordinate dependent non-commutativity Θ ab (x), especially whose with a non-constant rank. We derive the expression for the covariant derivative of matter field. The commutator relation for the covariant derivatives defines the Poisson field strength which is covariant under the Poisson gauge transformations and reproduces the standard U(1) field strength in the commutative limit. We derive the corresponding Bianchi identities. The field equations for the gauge and the matter fields are obtained from the gauge invariant action. We consider different examples of linear in coordinates Poisson structures Θ ab (x), as well as non-linear ones, and obtain explicit expressions for all proposed constructions. Our model is unique up to invertible field redefinitions and coordinate transformations. |
abstractGer |
Abstract The Poisson gauge algebra is a semi-classical limit of complete non- commutative gauge algebra. In the present work we formulate the Poisson gauge theory which is a dynamical field theoretical model having the Poisson gauge algebra as a corresponding algebra of gauge symmetries. The proposed model is designed to investigate the semi-classical features of the full non-commutative gauge theory with coordinate dependent non-commutativity Θ ab (x), especially whose with a non-constant rank. We derive the expression for the covariant derivative of matter field. The commutator relation for the covariant derivatives defines the Poisson field strength which is covariant under the Poisson gauge transformations and reproduces the standard U(1) field strength in the commutative limit. We derive the corresponding Bianchi identities. The field equations for the gauge and the matter fields are obtained from the gauge invariant action. We consider different examples of linear in coordinates Poisson structures Θ ab (x), as well as non-linear ones, and obtain explicit expressions for all proposed constructions. Our model is unique up to invertible field redefinitions and coordinate transformations. |
abstract_unstemmed |
Abstract The Poisson gauge algebra is a semi-classical limit of complete non- commutative gauge algebra. In the present work we formulate the Poisson gauge theory which is a dynamical field theoretical model having the Poisson gauge algebra as a corresponding algebra of gauge symmetries. The proposed model is designed to investigate the semi-classical features of the full non-commutative gauge theory with coordinate dependent non-commutativity Θ ab (x), especially whose with a non-constant rank. We derive the expression for the covariant derivative of matter field. The commutator relation for the covariant derivatives defines the Poisson field strength which is covariant under the Poisson gauge transformations and reproduces the standard U(1) field strength in the commutative limit. We derive the corresponding Bianchi identities. The field equations for the gauge and the matter fields are obtained from the gauge invariant action. We consider different examples of linear in coordinates Poisson structures Θ ab (x), as well as non-linear ones, and obtain explicit expressions for all proposed constructions. Our model is unique up to invertible field redefinitions and coordinate transformations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9 |
title_short |
Poisson gauge theory |
url |
https://doi.org/10.1007/JHEP09(2021)016 https://doaj.org/article/06a3fd3906464b28aadc8ee55a30a28d https://doaj.org/toc/1029-8479 |
remote_bool |
true |
ppnlink |
320910571 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/JHEP09(2021)016 |
callnumber-a |
QC770-798 |
up_date |
2024-07-03T21:21:36.945Z |
_version_ |
1803594442416848896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ003996301</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309181514.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP09(2021)016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ003996301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ06a3fd3906464b28aadc8ee55a30a28d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Vladislav G. Kupriyanov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Poisson gauge theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Poisson gauge algebra is a semi-classical limit of complete non- commutative gauge algebra. In the present work we formulate the Poisson gauge theory which is a dynamical field theoretical model having the Poisson gauge algebra as a corresponding algebra of gauge symmetries. The proposed model is designed to investigate the semi-classical features of the full non-commutative gauge theory with coordinate dependent non-commutativity Θ ab (x), especially whose with a non-constant rank. We derive the expression for the covariant derivative of matter field. The commutator relation for the covariant derivatives defines the Poisson field strength which is covariant under the Poisson gauge transformations and reproduces the standard U(1) field strength in the commutative limit. We derive the corresponding Bianchi identities. The field equations for the gauge and the matter fields are obtained from the gauge invariant action. We consider different examples of linear in coordinates Poisson structures Θ ab (x), as well as non-linear ones, and obtain explicit expressions for all proposed constructions. Our model is unique up to invertible field redefinitions and coordinate transformations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gauge Symmetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-Commutative Geometry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear and particle physics. Atomic energy. Radioactivity</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of High Energy Physics</subfield><subfield code="d">SpringerOpen, 2016</subfield><subfield code="g">(2021), 9, Seite 26</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">10298479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2021</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:26</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/JHEP09(2021)016</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/06a3fd3906464b28aadc8ee55a30a28d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/JHEP09(2021)016</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1029-8479</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2021</subfield><subfield code="e">9</subfield><subfield code="h">26</subfield></datafield></record></collection>
|
score |
7.401127 |