Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data
In the summer and autumn, which is the primary cropland planting preparation and harvest time, cropland burning is very common in China. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra active fire product (MOD14) and GlobeLand30-2010 data are used here to analyze the fire activity of...
Ausführliche Beschreibung
Autor*in: |
Huan Xie [verfasserIn] Li Du [verfasserIn] Sicong Liu [verfasserIn] Lei Chen [verfasserIn] Sa Gao [verfasserIn] Shuang Liu [verfasserIn] Haiyan Pan [verfasserIn] Xiaohua Tong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: ISPRS International Journal of Geo-Information - MDPI AG, 2012, 5(2016), 10, p 172 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2016 ; number:10, p 172 |
Links: |
---|
DOI / URN: |
10.3390/ijgi5100172 |
---|
Katalog-ID: |
DOAJ004151917 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ004151917 | ||
003 | DE-627 | ||
005 | 20230309182405.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijgi5100172 |2 doi | |
035 | |a (DE-627)DOAJ004151917 | ||
035 | |a (DE-599)DOAJa2037bf81b6148ec9d77a51d0e48fc0a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a G1-922 | |
100 | 0 | |a Huan Xie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the summer and autumn, which is the primary cropland planting preparation and harvest time, cropland burning is very common in China. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra active fire product (MOD14) and GlobeLand30-2010 data are used here to analyze the fire activity of the predominant land cover types. A total of 44,852 scenes of MOD14 images and MOD03 images are used, covering the whole of China from 20 May to 31 October during 2010 to 2014. Agricultural burning is a significant contributor to fire activity in China, and accounts for 60% on average of all the fire activity over the last five years. The spatial and temporal distribution of agricultural burning in seven different geographical regions is analyzed in detail. The experiments showed that the Central and Eastern China regions are the largest contributors to agricultural burning, producing 59%–80% of all the agricultural fires. At the national scale, the number of agricultural fire counts peak in June, which is associated primarily with winter burning of wheat croplands. | ||
650 | 4 | |a MODIS | |
650 | 4 | |a GlobeLand30 land cover data | |
650 | 4 | |a agricultural fire | |
653 | 0 | |a Geography (General) | |
700 | 0 | |a Li Du |e verfasserin |4 aut | |
700 | 0 | |a Sicong Liu |e verfasserin |4 aut | |
700 | 0 | |a Lei Chen |e verfasserin |4 aut | |
700 | 0 | |a Sa Gao |e verfasserin |4 aut | |
700 | 0 | |a Shuang Liu |e verfasserin |4 aut | |
700 | 0 | |a Haiyan Pan |e verfasserin |4 aut | |
700 | 0 | |a Xiaohua Tong |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t ISPRS International Journal of Geo-Information |d MDPI AG, 2012 |g 5(2016), 10, p 172 |w (DE-627)689130961 |w (DE-600)2655790-3 |x 22209964 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2016 |g number:10, p 172 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijgi5100172 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a2037bf81b6148ec9d77a51d0e48fc0a |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/2220-9964/5/10/172 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2220-9964 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2016 |e 10, p 172 |
author_variant |
h x hx l d ld s l sl l c lc s g sg s l sl h p hp x t xt |
---|---|
matchkey_str |
article:22209964:2016----::yaimntrnoarcluafrsnhnfo21t21uig |
hierarchy_sort_str |
2016 |
callnumber-subject-code |
G |
publishDate |
2016 |
allfields |
10.3390/ijgi5100172 doi (DE-627)DOAJ004151917 (DE-599)DOAJa2037bf81b6148ec9d77a51d0e48fc0a DE-627 ger DE-627 rakwb eng G1-922 Huan Xie verfasserin aut Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the summer and autumn, which is the primary cropland planting preparation and harvest time, cropland burning is very common in China. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra active fire product (MOD14) and GlobeLand30-2010 data are used here to analyze the fire activity of the predominant land cover types. A total of 44,852 scenes of MOD14 images and MOD03 images are used, covering the whole of China from 20 May to 31 October during 2010 to 2014. Agricultural burning is a significant contributor to fire activity in China, and accounts for 60% on average of all the fire activity over the last five years. The spatial and temporal distribution of agricultural burning in seven different geographical regions is analyzed in detail. The experiments showed that the Central and Eastern China regions are the largest contributors to agricultural burning, producing 59%–80% of all the agricultural fires. At the national scale, the number of agricultural fire counts peak in June, which is associated primarily with winter burning of wheat croplands. MODIS GlobeLand30 land cover data agricultural fire Geography (General) Li Du verfasserin aut Sicong Liu verfasserin aut Lei Chen verfasserin aut Sa Gao verfasserin aut Shuang Liu verfasserin aut Haiyan Pan verfasserin aut Xiaohua Tong verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 5(2016), 10, p 172 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:5 year:2016 number:10, p 172 https://doi.org/10.3390/ijgi5100172 kostenfrei https://doaj.org/article/a2037bf81b6148ec9d77a51d0e48fc0a kostenfrei http://www.mdpi.com/2220-9964/5/10/172 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 5 2016 10, p 172 |
spelling |
10.3390/ijgi5100172 doi (DE-627)DOAJ004151917 (DE-599)DOAJa2037bf81b6148ec9d77a51d0e48fc0a DE-627 ger DE-627 rakwb eng G1-922 Huan Xie verfasserin aut Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the summer and autumn, which is the primary cropland planting preparation and harvest time, cropland burning is very common in China. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra active fire product (MOD14) and GlobeLand30-2010 data are used here to analyze the fire activity of the predominant land cover types. A total of 44,852 scenes of MOD14 images and MOD03 images are used, covering the whole of China from 20 May to 31 October during 2010 to 2014. Agricultural burning is a significant contributor to fire activity in China, and accounts for 60% on average of all the fire activity over the last five years. The spatial and temporal distribution of agricultural burning in seven different geographical regions is analyzed in detail. The experiments showed that the Central and Eastern China regions are the largest contributors to agricultural burning, producing 59%–80% of all the agricultural fires. At the national scale, the number of agricultural fire counts peak in June, which is associated primarily with winter burning of wheat croplands. MODIS GlobeLand30 land cover data agricultural fire Geography (General) Li Du verfasserin aut Sicong Liu verfasserin aut Lei Chen verfasserin aut Sa Gao verfasserin aut Shuang Liu verfasserin aut Haiyan Pan verfasserin aut Xiaohua Tong verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 5(2016), 10, p 172 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:5 year:2016 number:10, p 172 https://doi.org/10.3390/ijgi5100172 kostenfrei https://doaj.org/article/a2037bf81b6148ec9d77a51d0e48fc0a kostenfrei http://www.mdpi.com/2220-9964/5/10/172 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 5 2016 10, p 172 |
allfields_unstemmed |
10.3390/ijgi5100172 doi (DE-627)DOAJ004151917 (DE-599)DOAJa2037bf81b6148ec9d77a51d0e48fc0a DE-627 ger DE-627 rakwb eng G1-922 Huan Xie verfasserin aut Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the summer and autumn, which is the primary cropland planting preparation and harvest time, cropland burning is very common in China. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra active fire product (MOD14) and GlobeLand30-2010 data are used here to analyze the fire activity of the predominant land cover types. A total of 44,852 scenes of MOD14 images and MOD03 images are used, covering the whole of China from 20 May to 31 October during 2010 to 2014. Agricultural burning is a significant contributor to fire activity in China, and accounts for 60% on average of all the fire activity over the last five years. The spatial and temporal distribution of agricultural burning in seven different geographical regions is analyzed in detail. The experiments showed that the Central and Eastern China regions are the largest contributors to agricultural burning, producing 59%–80% of all the agricultural fires. At the national scale, the number of agricultural fire counts peak in June, which is associated primarily with winter burning of wheat croplands. MODIS GlobeLand30 land cover data agricultural fire Geography (General) Li Du verfasserin aut Sicong Liu verfasserin aut Lei Chen verfasserin aut Sa Gao verfasserin aut Shuang Liu verfasserin aut Haiyan Pan verfasserin aut Xiaohua Tong verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 5(2016), 10, p 172 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:5 year:2016 number:10, p 172 https://doi.org/10.3390/ijgi5100172 kostenfrei https://doaj.org/article/a2037bf81b6148ec9d77a51d0e48fc0a kostenfrei http://www.mdpi.com/2220-9964/5/10/172 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 5 2016 10, p 172 |
allfieldsGer |
10.3390/ijgi5100172 doi (DE-627)DOAJ004151917 (DE-599)DOAJa2037bf81b6148ec9d77a51d0e48fc0a DE-627 ger DE-627 rakwb eng G1-922 Huan Xie verfasserin aut Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the summer and autumn, which is the primary cropland planting preparation and harvest time, cropland burning is very common in China. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra active fire product (MOD14) and GlobeLand30-2010 data are used here to analyze the fire activity of the predominant land cover types. A total of 44,852 scenes of MOD14 images and MOD03 images are used, covering the whole of China from 20 May to 31 October during 2010 to 2014. Agricultural burning is a significant contributor to fire activity in China, and accounts for 60% on average of all the fire activity over the last five years. The spatial and temporal distribution of agricultural burning in seven different geographical regions is analyzed in detail. The experiments showed that the Central and Eastern China regions are the largest contributors to agricultural burning, producing 59%–80% of all the agricultural fires. At the national scale, the number of agricultural fire counts peak in June, which is associated primarily with winter burning of wheat croplands. MODIS GlobeLand30 land cover data agricultural fire Geography (General) Li Du verfasserin aut Sicong Liu verfasserin aut Lei Chen verfasserin aut Sa Gao verfasserin aut Shuang Liu verfasserin aut Haiyan Pan verfasserin aut Xiaohua Tong verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 5(2016), 10, p 172 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:5 year:2016 number:10, p 172 https://doi.org/10.3390/ijgi5100172 kostenfrei https://doaj.org/article/a2037bf81b6148ec9d77a51d0e48fc0a kostenfrei http://www.mdpi.com/2220-9964/5/10/172 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 5 2016 10, p 172 |
allfieldsSound |
10.3390/ijgi5100172 doi (DE-627)DOAJ004151917 (DE-599)DOAJa2037bf81b6148ec9d77a51d0e48fc0a DE-627 ger DE-627 rakwb eng G1-922 Huan Xie verfasserin aut Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the summer and autumn, which is the primary cropland planting preparation and harvest time, cropland burning is very common in China. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra active fire product (MOD14) and GlobeLand30-2010 data are used here to analyze the fire activity of the predominant land cover types. A total of 44,852 scenes of MOD14 images and MOD03 images are used, covering the whole of China from 20 May to 31 October during 2010 to 2014. Agricultural burning is a significant contributor to fire activity in China, and accounts for 60% on average of all the fire activity over the last five years. The spatial and temporal distribution of agricultural burning in seven different geographical regions is analyzed in detail. The experiments showed that the Central and Eastern China regions are the largest contributors to agricultural burning, producing 59%–80% of all the agricultural fires. At the national scale, the number of agricultural fire counts peak in June, which is associated primarily with winter burning of wheat croplands. MODIS GlobeLand30 land cover data agricultural fire Geography (General) Li Du verfasserin aut Sicong Liu verfasserin aut Lei Chen verfasserin aut Sa Gao verfasserin aut Shuang Liu verfasserin aut Haiyan Pan verfasserin aut Xiaohua Tong verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 5(2016), 10, p 172 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:5 year:2016 number:10, p 172 https://doi.org/10.3390/ijgi5100172 kostenfrei https://doaj.org/article/a2037bf81b6148ec9d77a51d0e48fc0a kostenfrei http://www.mdpi.com/2220-9964/5/10/172 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 5 2016 10, p 172 |
language |
English |
source |
In ISPRS International Journal of Geo-Information 5(2016), 10, p 172 volume:5 year:2016 number:10, p 172 |
sourceStr |
In ISPRS International Journal of Geo-Information 5(2016), 10, p 172 volume:5 year:2016 number:10, p 172 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
MODIS GlobeLand30 land cover data agricultural fire Geography (General) |
isfreeaccess_bool |
true |
container_title |
ISPRS International Journal of Geo-Information |
authorswithroles_txt_mv |
Huan Xie @@aut@@ Li Du @@aut@@ Sicong Liu @@aut@@ Lei Chen @@aut@@ Sa Gao @@aut@@ Shuang Liu @@aut@@ Haiyan Pan @@aut@@ Xiaohua Tong @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
689130961 |
id |
DOAJ004151917 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ004151917</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309182405.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijgi5100172</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ004151917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa2037bf81b6148ec9d77a51d0e48fc0a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">G1-922</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Huan Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the summer and autumn, which is the primary cropland planting preparation and harvest time, cropland burning is very common in China. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra active fire product (MOD14) and GlobeLand30-2010 data are used here to analyze the fire activity of the predominant land cover types. A total of 44,852 scenes of MOD14 images and MOD03 images are used, covering the whole of China from 20 May to 31 October during 2010 to 2014. Agricultural burning is a significant contributor to fire activity in China, and accounts for 60% on average of all the fire activity over the last five years. The spatial and temporal distribution of agricultural burning in seven different geographical regions is analyzed in detail. The experiments showed that the Central and Eastern China regions are the largest contributors to agricultural burning, producing 59%–80% of all the agricultural fires. At the national scale, the number of agricultural fire counts peak in June, which is associated primarily with winter burning of wheat croplands.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MODIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GlobeLand30 land cover data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">agricultural fire</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geography (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sicong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sa Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiyan Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohua Tong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">ISPRS International Journal of Geo-Information</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">5(2016), 10, p 172</subfield><subfield code="w">(DE-627)689130961</subfield><subfield code="w">(DE-600)2655790-3</subfield><subfield code="x">22209964</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:10, p 172</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijgi5100172</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a2037bf81b6148ec9d77a51d0e48fc0a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2220-9964/5/10/172</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2220-9964</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2016</subfield><subfield code="e">10, p 172</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Huan Xie |
spellingShingle |
Huan Xie misc G1-922 misc MODIS misc GlobeLand30 land cover data misc agricultural fire misc Geography (General) Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data |
authorStr |
Huan Xie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)689130961 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
G1-922 |
illustrated |
Not Illustrated |
issn |
22209964 |
topic_title |
G1-922 Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data MODIS GlobeLand30 land cover data agricultural fire |
topic |
misc G1-922 misc MODIS misc GlobeLand30 land cover data misc agricultural fire misc Geography (General) |
topic_unstemmed |
misc G1-922 misc MODIS misc GlobeLand30 land cover data misc agricultural fire misc Geography (General) |
topic_browse |
misc G1-922 misc MODIS misc GlobeLand30 land cover data misc agricultural fire misc Geography (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
ISPRS International Journal of Geo-Information |
hierarchy_parent_id |
689130961 |
hierarchy_top_title |
ISPRS International Journal of Geo-Information |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)689130961 (DE-600)2655790-3 |
title |
Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data |
ctrlnum |
(DE-627)DOAJ004151917 (DE-599)DOAJa2037bf81b6148ec9d77a51d0e48fc0a |
title_full |
Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data |
author_sort |
Huan Xie |
journal |
ISPRS International Journal of Geo-Information |
journalStr |
ISPRS International Journal of Geo-Information |
callnumber-first-code |
G |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Huan Xie Li Du Sicong Liu Lei Chen Sa Gao Shuang Liu Haiyan Pan Xiaohua Tong |
container_volume |
5 |
class |
G1-922 |
format_se |
Elektronische Aufsätze |
author-letter |
Huan Xie |
doi_str_mv |
10.3390/ijgi5100172 |
author2-role |
verfasserin |
title_sort |
dynamic monitoring of agricultural fires in china from 2010 to 2014 using modis and globeland30 data |
callnumber |
G1-922 |
title_auth |
Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data |
abstract |
In the summer and autumn, which is the primary cropland planting preparation and harvest time, cropland burning is very common in China. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra active fire product (MOD14) and GlobeLand30-2010 data are used here to analyze the fire activity of the predominant land cover types. A total of 44,852 scenes of MOD14 images and MOD03 images are used, covering the whole of China from 20 May to 31 October during 2010 to 2014. Agricultural burning is a significant contributor to fire activity in China, and accounts for 60% on average of all the fire activity over the last five years. The spatial and temporal distribution of agricultural burning in seven different geographical regions is analyzed in detail. The experiments showed that the Central and Eastern China regions are the largest contributors to agricultural burning, producing 59%–80% of all the agricultural fires. At the national scale, the number of agricultural fire counts peak in June, which is associated primarily with winter burning of wheat croplands. |
abstractGer |
In the summer and autumn, which is the primary cropland planting preparation and harvest time, cropland burning is very common in China. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra active fire product (MOD14) and GlobeLand30-2010 data are used here to analyze the fire activity of the predominant land cover types. A total of 44,852 scenes of MOD14 images and MOD03 images are used, covering the whole of China from 20 May to 31 October during 2010 to 2014. Agricultural burning is a significant contributor to fire activity in China, and accounts for 60% on average of all the fire activity over the last five years. The spatial and temporal distribution of agricultural burning in seven different geographical regions is analyzed in detail. The experiments showed that the Central and Eastern China regions are the largest contributors to agricultural burning, producing 59%–80% of all the agricultural fires. At the national scale, the number of agricultural fire counts peak in June, which is associated primarily with winter burning of wheat croplands. |
abstract_unstemmed |
In the summer and autumn, which is the primary cropland planting preparation and harvest time, cropland burning is very common in China. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra active fire product (MOD14) and GlobeLand30-2010 data are used here to analyze the fire activity of the predominant land cover types. A total of 44,852 scenes of MOD14 images and MOD03 images are used, covering the whole of China from 20 May to 31 October during 2010 to 2014. Agricultural burning is a significant contributor to fire activity in China, and accounts for 60% on average of all the fire activity over the last five years. The spatial and temporal distribution of agricultural burning in seven different geographical regions is analyzed in detail. The experiments showed that the Central and Eastern China regions are the largest contributors to agricultural burning, producing 59%–80% of all the agricultural fires. At the national scale, the number of agricultural fire counts peak in June, which is associated primarily with winter burning of wheat croplands. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
10, p 172 |
title_short |
Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data |
url |
https://doi.org/10.3390/ijgi5100172 https://doaj.org/article/a2037bf81b6148ec9d77a51d0e48fc0a http://www.mdpi.com/2220-9964/5/10/172 https://doaj.org/toc/2220-9964 |
remote_bool |
true |
author2 |
Li Du Sicong Liu Lei Chen Sa Gao Shuang Liu Haiyan Pan Xiaohua Tong |
author2Str |
Li Du Sicong Liu Lei Chen Sa Gao Shuang Liu Haiyan Pan Xiaohua Tong |
ppnlink |
689130961 |
callnumber-subject |
G - General Geography |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijgi5100172 |
callnumber-a |
G1-922 |
up_date |
2024-07-03T22:15:33.591Z |
_version_ |
1803597836287213568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ004151917</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309182405.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijgi5100172</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ004151917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa2037bf81b6148ec9d77a51d0e48fc0a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">G1-922</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Huan Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the summer and autumn, which is the primary cropland planting preparation and harvest time, cropland burning is very common in China. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra active fire product (MOD14) and GlobeLand30-2010 data are used here to analyze the fire activity of the predominant land cover types. A total of 44,852 scenes of MOD14 images and MOD03 images are used, covering the whole of China from 20 May to 31 October during 2010 to 2014. Agricultural burning is a significant contributor to fire activity in China, and accounts for 60% on average of all the fire activity over the last five years. The spatial and temporal distribution of agricultural burning in seven different geographical regions is analyzed in detail. The experiments showed that the Central and Eastern China regions are the largest contributors to agricultural burning, producing 59%–80% of all the agricultural fires. At the national scale, the number of agricultural fire counts peak in June, which is associated primarily with winter burning of wheat croplands.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MODIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GlobeLand30 land cover data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">agricultural fire</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geography (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sicong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sa Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiyan Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohua Tong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">ISPRS International Journal of Geo-Information</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">5(2016), 10, p 172</subfield><subfield code="w">(DE-627)689130961</subfield><subfield code="w">(DE-600)2655790-3</subfield><subfield code="x">22209964</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:10, p 172</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijgi5100172</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a2037bf81b6148ec9d77a51d0e48fc0a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2220-9964/5/10/172</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2220-9964</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2016</subfield><subfield code="e">10, p 172</subfield></datafield></record></collection>
|
score |
7.400522 |