Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data
The US is exposed to myriad natural hazards causing USD billions in damages and thousands of fatalities each year. Significant population and economic growth during the last several decades have resulted in more people residing in hazardous places. However, consistent national-scale hazard threat as...
Ausführliche Beschreibung
Autor*in: |
Christopher T. Emrich [verfasserIn] Yao Zhou [verfasserIn] Sanam K. Aksha [verfasserIn] Herbert E. Longenecker [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sustainability - MDPI AG, 2009, 14(2022), 5, p 2685 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:5, p 2685 |
Links: |
---|
DOI / URN: |
10.3390/su14052685 |
---|
Katalog-ID: |
DOAJ004243021 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ004243021 | ||
003 | DE-627 | ||
005 | 20240414180326.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/su14052685 |2 doi | |
035 | |a (DE-627)DOAJ004243021 | ||
035 | |a (DE-599)DOAJe45fe832a94947eb8de7d2362a6ca6a0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD194-195 | |
050 | 0 | |a TJ807-830 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Christopher T. Emrich |e verfasserin |4 aut | |
245 | 1 | 0 | |a Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The US is exposed to myriad natural hazards causing USD billions in damages and thousands of fatalities each year. Significant population and economic growth during the last several decades have resulted in more people residing in hazardous places. However, consistent national-scale hazard threat assessment techniques reflecting the state of hazard knowledge are not readily available for application in risk and vulnerability assessments. Mapping natural hazard threats is the crucial first step in identifying and implementing threat reduction or mitigation strategies. In this study, we demonstrate applied GIS approaches for creating and synthesizing US hazard threat extents using publicly available data for 15 natural hazards. Individually mapping each threat enables empirically supported intervention development and the building of a Composite Hazard Index (CHI). Summarizing the hazard frequencies provides a novel representation of US hazardousness. Implementing cluster analysis to regionalize US counties based on their underlying hazard characteristics offers insight into hazard threats’ spatial (non-political) natures. The results indicate that the southeast, central plains, and coastal regions of the northeast had high hazard occurrence scores, whereas more moderate hazard scores were observed west of the continental divide. Furthermore, while no place is safe from hazard occurrence, identifying each region’s distinct “hazardousness” can support individualized risk assessments and mitigation intervention development. | ||
650 | 4 | |a natural hazard | |
650 | 4 | |a multi-hazard assessment | |
650 | 4 | |a composite hazard index | |
650 | 4 | |a hexagonal grids | |
650 | 4 | |a geospatial approach | |
650 | 4 | |a open data | |
653 | 0 | |a Environmental effects of industries and plants | |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Yao Zhou |e verfasserin |4 aut | |
700 | 0 | |a Sanam K. Aksha |e verfasserin |4 aut | |
700 | 0 | |a Herbert E. Longenecker |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sustainability |d MDPI AG, 2009 |g 14(2022), 5, p 2685 |w (DE-627)610604120 |w (DE-600)2518383-7 |x 20711050 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:5, p 2685 |
856 | 4 | 0 | |u https://doi.org/10.3390/su14052685 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e45fe832a94947eb8de7d2362a6ca6a0 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2071-1050/14/5/2685 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2071-1050 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 5, p 2685 |
author_variant |
c t e cte y z yz s k a ska h e l hel |
---|---|
matchkey_str |
article:20711050:2022----::raigntowdcmoieaadneuigmiialbsdhetsesetprah |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TD |
publishDate |
2022 |
allfields |
10.3390/su14052685 doi (DE-627)DOAJ004243021 (DE-599)DOAJe45fe832a94947eb8de7d2362a6ca6a0 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Christopher T. Emrich verfasserin aut Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The US is exposed to myriad natural hazards causing USD billions in damages and thousands of fatalities each year. Significant population and economic growth during the last several decades have resulted in more people residing in hazardous places. However, consistent national-scale hazard threat assessment techniques reflecting the state of hazard knowledge are not readily available for application in risk and vulnerability assessments. Mapping natural hazard threats is the crucial first step in identifying and implementing threat reduction or mitigation strategies. In this study, we demonstrate applied GIS approaches for creating and synthesizing US hazard threat extents using publicly available data for 15 natural hazards. Individually mapping each threat enables empirically supported intervention development and the building of a Composite Hazard Index (CHI). Summarizing the hazard frequencies provides a novel representation of US hazardousness. Implementing cluster analysis to regionalize US counties based on their underlying hazard characteristics offers insight into hazard threats’ spatial (non-political) natures. The results indicate that the southeast, central plains, and coastal regions of the northeast had high hazard occurrence scores, whereas more moderate hazard scores were observed west of the continental divide. Furthermore, while no place is safe from hazard occurrence, identifying each region’s distinct “hazardousness” can support individualized risk assessments and mitigation intervention development. natural hazard multi-hazard assessment composite hazard index hexagonal grids geospatial approach open data Environmental effects of industries and plants Renewable energy sources Environmental sciences Yao Zhou verfasserin aut Sanam K. Aksha verfasserin aut Herbert E. Longenecker verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 5, p 2685 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:5, p 2685 https://doi.org/10.3390/su14052685 kostenfrei https://doaj.org/article/e45fe832a94947eb8de7d2362a6ca6a0 kostenfrei https://www.mdpi.com/2071-1050/14/5/2685 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 5, p 2685 |
spelling |
10.3390/su14052685 doi (DE-627)DOAJ004243021 (DE-599)DOAJe45fe832a94947eb8de7d2362a6ca6a0 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Christopher T. Emrich verfasserin aut Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The US is exposed to myriad natural hazards causing USD billions in damages and thousands of fatalities each year. Significant population and economic growth during the last several decades have resulted in more people residing in hazardous places. However, consistent national-scale hazard threat assessment techniques reflecting the state of hazard knowledge are not readily available for application in risk and vulnerability assessments. Mapping natural hazard threats is the crucial first step in identifying and implementing threat reduction or mitigation strategies. In this study, we demonstrate applied GIS approaches for creating and synthesizing US hazard threat extents using publicly available data for 15 natural hazards. Individually mapping each threat enables empirically supported intervention development and the building of a Composite Hazard Index (CHI). Summarizing the hazard frequencies provides a novel representation of US hazardousness. Implementing cluster analysis to regionalize US counties based on their underlying hazard characteristics offers insight into hazard threats’ spatial (non-political) natures. The results indicate that the southeast, central plains, and coastal regions of the northeast had high hazard occurrence scores, whereas more moderate hazard scores were observed west of the continental divide. Furthermore, while no place is safe from hazard occurrence, identifying each region’s distinct “hazardousness” can support individualized risk assessments and mitigation intervention development. natural hazard multi-hazard assessment composite hazard index hexagonal grids geospatial approach open data Environmental effects of industries and plants Renewable energy sources Environmental sciences Yao Zhou verfasserin aut Sanam K. Aksha verfasserin aut Herbert E. Longenecker verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 5, p 2685 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:5, p 2685 https://doi.org/10.3390/su14052685 kostenfrei https://doaj.org/article/e45fe832a94947eb8de7d2362a6ca6a0 kostenfrei https://www.mdpi.com/2071-1050/14/5/2685 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 5, p 2685 |
allfields_unstemmed |
10.3390/su14052685 doi (DE-627)DOAJ004243021 (DE-599)DOAJe45fe832a94947eb8de7d2362a6ca6a0 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Christopher T. Emrich verfasserin aut Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The US is exposed to myriad natural hazards causing USD billions in damages and thousands of fatalities each year. Significant population and economic growth during the last several decades have resulted in more people residing in hazardous places. However, consistent national-scale hazard threat assessment techniques reflecting the state of hazard knowledge are not readily available for application in risk and vulnerability assessments. Mapping natural hazard threats is the crucial first step in identifying and implementing threat reduction or mitigation strategies. In this study, we demonstrate applied GIS approaches for creating and synthesizing US hazard threat extents using publicly available data for 15 natural hazards. Individually mapping each threat enables empirically supported intervention development and the building of a Composite Hazard Index (CHI). Summarizing the hazard frequencies provides a novel representation of US hazardousness. Implementing cluster analysis to regionalize US counties based on their underlying hazard characteristics offers insight into hazard threats’ spatial (non-political) natures. The results indicate that the southeast, central plains, and coastal regions of the northeast had high hazard occurrence scores, whereas more moderate hazard scores were observed west of the continental divide. Furthermore, while no place is safe from hazard occurrence, identifying each region’s distinct “hazardousness” can support individualized risk assessments and mitigation intervention development. natural hazard multi-hazard assessment composite hazard index hexagonal grids geospatial approach open data Environmental effects of industries and plants Renewable energy sources Environmental sciences Yao Zhou verfasserin aut Sanam K. Aksha verfasserin aut Herbert E. Longenecker verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 5, p 2685 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:5, p 2685 https://doi.org/10.3390/su14052685 kostenfrei https://doaj.org/article/e45fe832a94947eb8de7d2362a6ca6a0 kostenfrei https://www.mdpi.com/2071-1050/14/5/2685 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 5, p 2685 |
allfieldsGer |
10.3390/su14052685 doi (DE-627)DOAJ004243021 (DE-599)DOAJe45fe832a94947eb8de7d2362a6ca6a0 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Christopher T. Emrich verfasserin aut Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The US is exposed to myriad natural hazards causing USD billions in damages and thousands of fatalities each year. Significant population and economic growth during the last several decades have resulted in more people residing in hazardous places. However, consistent national-scale hazard threat assessment techniques reflecting the state of hazard knowledge are not readily available for application in risk and vulnerability assessments. Mapping natural hazard threats is the crucial first step in identifying and implementing threat reduction or mitigation strategies. In this study, we demonstrate applied GIS approaches for creating and synthesizing US hazard threat extents using publicly available data for 15 natural hazards. Individually mapping each threat enables empirically supported intervention development and the building of a Composite Hazard Index (CHI). Summarizing the hazard frequencies provides a novel representation of US hazardousness. Implementing cluster analysis to regionalize US counties based on their underlying hazard characteristics offers insight into hazard threats’ spatial (non-political) natures. The results indicate that the southeast, central plains, and coastal regions of the northeast had high hazard occurrence scores, whereas more moderate hazard scores were observed west of the continental divide. Furthermore, while no place is safe from hazard occurrence, identifying each region’s distinct “hazardousness” can support individualized risk assessments and mitigation intervention development. natural hazard multi-hazard assessment composite hazard index hexagonal grids geospatial approach open data Environmental effects of industries and plants Renewable energy sources Environmental sciences Yao Zhou verfasserin aut Sanam K. Aksha verfasserin aut Herbert E. Longenecker verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 5, p 2685 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:5, p 2685 https://doi.org/10.3390/su14052685 kostenfrei https://doaj.org/article/e45fe832a94947eb8de7d2362a6ca6a0 kostenfrei https://www.mdpi.com/2071-1050/14/5/2685 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 5, p 2685 |
allfieldsSound |
10.3390/su14052685 doi (DE-627)DOAJ004243021 (DE-599)DOAJe45fe832a94947eb8de7d2362a6ca6a0 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Christopher T. Emrich verfasserin aut Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The US is exposed to myriad natural hazards causing USD billions in damages and thousands of fatalities each year. Significant population and economic growth during the last several decades have resulted in more people residing in hazardous places. However, consistent national-scale hazard threat assessment techniques reflecting the state of hazard knowledge are not readily available for application in risk and vulnerability assessments. Mapping natural hazard threats is the crucial first step in identifying and implementing threat reduction or mitigation strategies. In this study, we demonstrate applied GIS approaches for creating and synthesizing US hazard threat extents using publicly available data for 15 natural hazards. Individually mapping each threat enables empirically supported intervention development and the building of a Composite Hazard Index (CHI). Summarizing the hazard frequencies provides a novel representation of US hazardousness. Implementing cluster analysis to regionalize US counties based on their underlying hazard characteristics offers insight into hazard threats’ spatial (non-political) natures. The results indicate that the southeast, central plains, and coastal regions of the northeast had high hazard occurrence scores, whereas more moderate hazard scores were observed west of the continental divide. Furthermore, while no place is safe from hazard occurrence, identifying each region’s distinct “hazardousness” can support individualized risk assessments and mitigation intervention development. natural hazard multi-hazard assessment composite hazard index hexagonal grids geospatial approach open data Environmental effects of industries and plants Renewable energy sources Environmental sciences Yao Zhou verfasserin aut Sanam K. Aksha verfasserin aut Herbert E. Longenecker verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 5, p 2685 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:5, p 2685 https://doi.org/10.3390/su14052685 kostenfrei https://doaj.org/article/e45fe832a94947eb8de7d2362a6ca6a0 kostenfrei https://www.mdpi.com/2071-1050/14/5/2685 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 5, p 2685 |
language |
English |
source |
In Sustainability 14(2022), 5, p 2685 volume:14 year:2022 number:5, p 2685 |
sourceStr |
In Sustainability 14(2022), 5, p 2685 volume:14 year:2022 number:5, p 2685 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
natural hazard multi-hazard assessment composite hazard index hexagonal grids geospatial approach open data Environmental effects of industries and plants Renewable energy sources Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Sustainability |
authorswithroles_txt_mv |
Christopher T. Emrich @@aut@@ Yao Zhou @@aut@@ Sanam K. Aksha @@aut@@ Herbert E. Longenecker @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
610604120 |
id |
DOAJ004243021 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ004243021</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414180326.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su14052685</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ004243021</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe45fe832a94947eb8de7d2362a6ca6a0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Christopher T. Emrich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The US is exposed to myriad natural hazards causing USD billions in damages and thousands of fatalities each year. Significant population and economic growth during the last several decades have resulted in more people residing in hazardous places. However, consistent national-scale hazard threat assessment techniques reflecting the state of hazard knowledge are not readily available for application in risk and vulnerability assessments. Mapping natural hazard threats is the crucial first step in identifying and implementing threat reduction or mitigation strategies. In this study, we demonstrate applied GIS approaches for creating and synthesizing US hazard threat extents using publicly available data for 15 natural hazards. Individually mapping each threat enables empirically supported intervention development and the building of a Composite Hazard Index (CHI). Summarizing the hazard frequencies provides a novel representation of US hazardousness. Implementing cluster analysis to regionalize US counties based on their underlying hazard characteristics offers insight into hazard threats’ spatial (non-political) natures. The results indicate that the southeast, central plains, and coastal regions of the northeast had high hazard occurrence scores, whereas more moderate hazard scores were observed west of the continental divide. Furthermore, while no place is safe from hazard occurrence, identifying each region’s distinct “hazardousness” can support individualized risk assessments and mitigation intervention development.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">natural hazard</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-hazard assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite hazard index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hexagonal grids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geospatial approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">open data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yao Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sanam K. Aksha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Herbert E. Longenecker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 5, p 2685</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5, p 2685</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su14052685</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e45fe832a94947eb8de7d2362a6ca6a0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/14/5/2685</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">5, p 2685</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Christopher T. Emrich |
spellingShingle |
Christopher T. Emrich misc TD194-195 misc TJ807-830 misc GE1-350 misc natural hazard misc multi-hazard assessment misc composite hazard index misc hexagonal grids misc geospatial approach misc open data misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data |
authorStr |
Christopher T. Emrich |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604120 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD194-195 |
illustrated |
Not Illustrated |
issn |
20711050 |
topic_title |
TD194-195 TJ807-830 GE1-350 Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data natural hazard multi-hazard assessment composite hazard index hexagonal grids geospatial approach open data |
topic |
misc TD194-195 misc TJ807-830 misc GE1-350 misc natural hazard misc multi-hazard assessment misc composite hazard index misc hexagonal grids misc geospatial approach misc open data misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_unstemmed |
misc TD194-195 misc TJ807-830 misc GE1-350 misc natural hazard misc multi-hazard assessment misc composite hazard index misc hexagonal grids misc geospatial approach misc open data misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_browse |
misc TD194-195 misc TJ807-830 misc GE1-350 misc natural hazard misc multi-hazard assessment misc composite hazard index misc hexagonal grids misc geospatial approach misc open data misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sustainability |
hierarchy_parent_id |
610604120 |
hierarchy_top_title |
Sustainability |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604120 (DE-600)2518383-7 |
title |
Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data |
ctrlnum |
(DE-627)DOAJ004243021 (DE-599)DOAJe45fe832a94947eb8de7d2362a6ca6a0 |
title_full |
Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data |
author_sort |
Christopher T. Emrich |
journal |
Sustainability |
journalStr |
Sustainability |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Christopher T. Emrich Yao Zhou Sanam K. Aksha Herbert E. Longenecker |
container_volume |
14 |
class |
TD194-195 TJ807-830 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Christopher T. Emrich |
doi_str_mv |
10.3390/su14052685 |
author2-role |
verfasserin |
title_sort |
creating a nationwide composite hazard index using empirically based threat assessment approaches applied to open geospatial data |
callnumber |
TD194-195 |
title_auth |
Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data |
abstract |
The US is exposed to myriad natural hazards causing USD billions in damages and thousands of fatalities each year. Significant population and economic growth during the last several decades have resulted in more people residing in hazardous places. However, consistent national-scale hazard threat assessment techniques reflecting the state of hazard knowledge are not readily available for application in risk and vulnerability assessments. Mapping natural hazard threats is the crucial first step in identifying and implementing threat reduction or mitigation strategies. In this study, we demonstrate applied GIS approaches for creating and synthesizing US hazard threat extents using publicly available data for 15 natural hazards. Individually mapping each threat enables empirically supported intervention development and the building of a Composite Hazard Index (CHI). Summarizing the hazard frequencies provides a novel representation of US hazardousness. Implementing cluster analysis to regionalize US counties based on their underlying hazard characteristics offers insight into hazard threats’ spatial (non-political) natures. The results indicate that the southeast, central plains, and coastal regions of the northeast had high hazard occurrence scores, whereas more moderate hazard scores were observed west of the continental divide. Furthermore, while no place is safe from hazard occurrence, identifying each region’s distinct “hazardousness” can support individualized risk assessments and mitigation intervention development. |
abstractGer |
The US is exposed to myriad natural hazards causing USD billions in damages and thousands of fatalities each year. Significant population and economic growth during the last several decades have resulted in more people residing in hazardous places. However, consistent national-scale hazard threat assessment techniques reflecting the state of hazard knowledge are not readily available for application in risk and vulnerability assessments. Mapping natural hazard threats is the crucial first step in identifying and implementing threat reduction or mitigation strategies. In this study, we demonstrate applied GIS approaches for creating and synthesizing US hazard threat extents using publicly available data for 15 natural hazards. Individually mapping each threat enables empirically supported intervention development and the building of a Composite Hazard Index (CHI). Summarizing the hazard frequencies provides a novel representation of US hazardousness. Implementing cluster analysis to regionalize US counties based on their underlying hazard characteristics offers insight into hazard threats’ spatial (non-political) natures. The results indicate that the southeast, central plains, and coastal regions of the northeast had high hazard occurrence scores, whereas more moderate hazard scores were observed west of the continental divide. Furthermore, while no place is safe from hazard occurrence, identifying each region’s distinct “hazardousness” can support individualized risk assessments and mitigation intervention development. |
abstract_unstemmed |
The US is exposed to myriad natural hazards causing USD billions in damages and thousands of fatalities each year. Significant population and economic growth during the last several decades have resulted in more people residing in hazardous places. However, consistent national-scale hazard threat assessment techniques reflecting the state of hazard knowledge are not readily available for application in risk and vulnerability assessments. Mapping natural hazard threats is the crucial first step in identifying and implementing threat reduction or mitigation strategies. In this study, we demonstrate applied GIS approaches for creating and synthesizing US hazard threat extents using publicly available data for 15 natural hazards. Individually mapping each threat enables empirically supported intervention development and the building of a Composite Hazard Index (CHI). Summarizing the hazard frequencies provides a novel representation of US hazardousness. Implementing cluster analysis to regionalize US counties based on their underlying hazard characteristics offers insight into hazard threats’ spatial (non-political) natures. The results indicate that the southeast, central plains, and coastal regions of the northeast had high hazard occurrence scores, whereas more moderate hazard scores were observed west of the continental divide. Furthermore, while no place is safe from hazard occurrence, identifying each region’s distinct “hazardousness” can support individualized risk assessments and mitigation intervention development. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 2685 |
title_short |
Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data |
url |
https://doi.org/10.3390/su14052685 https://doaj.org/article/e45fe832a94947eb8de7d2362a6ca6a0 https://www.mdpi.com/2071-1050/14/5/2685 https://doaj.org/toc/2071-1050 |
remote_bool |
true |
author2 |
Yao Zhou Sanam K. Aksha Herbert E. Longenecker |
author2Str |
Yao Zhou Sanam K. Aksha Herbert E. Longenecker |
ppnlink |
610604120 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/su14052685 |
callnumber-a |
TD194-195 |
up_date |
2024-07-03T22:45:32.614Z |
_version_ |
1803599722698506240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ004243021</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414180326.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su14052685</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ004243021</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe45fe832a94947eb8de7d2362a6ca6a0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Christopher T. Emrich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The US is exposed to myriad natural hazards causing USD billions in damages and thousands of fatalities each year. Significant population and economic growth during the last several decades have resulted in more people residing in hazardous places. However, consistent national-scale hazard threat assessment techniques reflecting the state of hazard knowledge are not readily available for application in risk and vulnerability assessments. Mapping natural hazard threats is the crucial first step in identifying and implementing threat reduction or mitigation strategies. In this study, we demonstrate applied GIS approaches for creating and synthesizing US hazard threat extents using publicly available data for 15 natural hazards. Individually mapping each threat enables empirically supported intervention development and the building of a Composite Hazard Index (CHI). Summarizing the hazard frequencies provides a novel representation of US hazardousness. Implementing cluster analysis to regionalize US counties based on their underlying hazard characteristics offers insight into hazard threats’ spatial (non-political) natures. The results indicate that the southeast, central plains, and coastal regions of the northeast had high hazard occurrence scores, whereas more moderate hazard scores were observed west of the continental divide. Furthermore, while no place is safe from hazard occurrence, identifying each region’s distinct “hazardousness” can support individualized risk assessments and mitigation intervention development.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">natural hazard</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-hazard assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite hazard index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hexagonal grids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geospatial approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">open data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yao Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sanam K. Aksha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Herbert E. Longenecker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 5, p 2685</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5, p 2685</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su14052685</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e45fe832a94947eb8de7d2362a6ca6a0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/14/5/2685</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">5, p 2685</subfield></datafield></record></collection>
|
score |
7.401272 |