Distribution of migratory fish in the stream (depth, velocity, body size, predators)
In order to supplement the available information for the eco-hydraulic approach to designing fish passages, taking into account the taxonomic, dimensional structure, as well as taking into account the presence of predatory fish in the stream, the distribution of migratory fish of the boreal plain fa...
Ausführliche Beschreibung
Autor*in: |
A. A. Chemagin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
fish migration; antipredator behaviour; predation risk; body size fish; fishway |
---|
Übergeordnetes Werk: |
In: Biosystems Diversity - Oles Honchar Dnipro National University, 2017, 27(2019), 3, Seite 221-226 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:2019 ; number:3 ; pages:221-226 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.15421/011930 |
---|
Katalog-ID: |
DOAJ004429850 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ004429850 | ||
003 | DE-627 | ||
005 | 20230307023036.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.15421/011930 |2 doi | |
035 | |a (DE-627)DOAJ004429850 | ||
035 | |a (DE-599)DOAJ35341ebe9f714db48361c5a11e2e465b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a A. A. Chemagin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Distribution of migratory fish in the stream (depth, velocity, body size, predators) |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In order to supplement the available information for the eco-hydraulic approach to designing fish passages, taking into account the taxonomic, dimensional structure, as well as taking into account the presence of predatory fish in the stream, the distribution of migratory fish of the boreal plain faunistic complex (Russian Federation) was studied. Three depth-velocity sections from the shore to the midstream were investigated: 5 m and 27.8 cm/s, 8 m and 44.4 cm/s, 11 m and 55.6 cm/s. Analysis of the migration distribution of fish showed that in the direction from the shore to the midstream, the proportion of representatives of Cyprinidae decreases from 41.8–24.3% and that of Percidae decreases from 25.0–18.4%. For individuals of two groups: the Acipenseridae and Lotidae, Coregonidae and Esocidae, patterns of distribution in the structure of migratory fish are opposite – their share increases with increasing speed and depth characteristics: 23.0–40.2% and 10.2–17.1%, respectively. An assessment of the dimensional structure revealed a feature of increase in the size range of fish from the shore to the midstream: the dominance of small individuals (<10 cm) in the shore area is replaced by the dominance of large fish (< 30 cm) in the area of higher speeds and depths. A significant difference in the distribution for all studied taxonomic fish groups between the shore and the midstream was shown. Thus, it has been established that for Cyprinidae during the migration period, the choice shifts in favour of minimizing energy costs, and the choice to avoid the risk of predation from individuals of the groups: Coregonidae and Esocidae, and also Percidae, shifts in favour of the former. The distribution of perch is influenced by the reduction of energy costs and the simultaneous avoidance of predation and cannibalism. For the fish group Acipenseridae and Lotidae, their predominance in the deeper area is due to their less developed visual orientation mechanism in the stream because they are bottom-living fish species. | ||
650 | 4 | |a fish migration; antipredator behaviour; predation risk; body size fish; fishway | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
773 | 0 | 8 | |i In |t Biosystems Diversity |d Oles Honchar Dnipro National University, 2017 |g 27(2019), 3, Seite 221-226 |w (DE-627)1010058657 |x 25202529 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:2019 |g number:3 |g pages:221-226 |
856 | 4 | 0 | |u https://doi.org/10.15421/011930 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/35341ebe9f714db48361c5a11e2e465b |z kostenfrei |
856 | 4 | 0 | |u https://ecology.dp.ua/index.php/ECO/article/view/995 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2519-8513 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2520-2529 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2863 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 27 |j 2019 |e 3 |h 221-226 |
author_variant |
a a c aac |
---|---|
matchkey_str |
article:25202529:2019----::itiuinfirtrfsitetemetvlct |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.15421/011930 doi (DE-627)DOAJ004429850 (DE-599)DOAJ35341ebe9f714db48361c5a11e2e465b DE-627 ger DE-627 rakwb eng A. A. Chemagin verfasserin aut Distribution of migratory fish in the stream (depth, velocity, body size, predators) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to supplement the available information for the eco-hydraulic approach to designing fish passages, taking into account the taxonomic, dimensional structure, as well as taking into account the presence of predatory fish in the stream, the distribution of migratory fish of the boreal plain faunistic complex (Russian Federation) was studied. Three depth-velocity sections from the shore to the midstream were investigated: 5 m and 27.8 cm/s, 8 m and 44.4 cm/s, 11 m and 55.6 cm/s. Analysis of the migration distribution of fish showed that in the direction from the shore to the midstream, the proportion of representatives of Cyprinidae decreases from 41.8–24.3% and that of Percidae decreases from 25.0–18.4%. For individuals of two groups: the Acipenseridae and Lotidae, Coregonidae and Esocidae, patterns of distribution in the structure of migratory fish are opposite – their share increases with increasing speed and depth characteristics: 23.0–40.2% and 10.2–17.1%, respectively. An assessment of the dimensional structure revealed a feature of increase in the size range of fish from the shore to the midstream: the dominance of small individuals (<10 cm) in the shore area is replaced by the dominance of large fish (< 30 cm) in the area of higher speeds and depths. A significant difference in the distribution for all studied taxonomic fish groups between the shore and the midstream was shown. Thus, it has been established that for Cyprinidae during the migration period, the choice shifts in favour of minimizing energy costs, and the choice to avoid the risk of predation from individuals of the groups: Coregonidae and Esocidae, and also Percidae, shifts in favour of the former. The distribution of perch is influenced by the reduction of energy costs and the simultaneous avoidance of predation and cannibalism. For the fish group Acipenseridae and Lotidae, their predominance in the deeper area is due to their less developed visual orientation mechanism in the stream because they are bottom-living fish species. fish migration; antipredator behaviour; predation risk; body size fish; fishway Science Q In Biosystems Diversity Oles Honchar Dnipro National University, 2017 27(2019), 3, Seite 221-226 (DE-627)1010058657 25202529 nnns volume:27 year:2019 number:3 pages:221-226 https://doi.org/10.15421/011930 kostenfrei https://doaj.org/article/35341ebe9f714db48361c5a11e2e465b kostenfrei https://ecology.dp.ua/index.php/ECO/article/view/995 kostenfrei https://doaj.org/toc/2519-8513 Journal toc kostenfrei https://doaj.org/toc/2520-2529 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2863 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 27 2019 3 221-226 |
spelling |
10.15421/011930 doi (DE-627)DOAJ004429850 (DE-599)DOAJ35341ebe9f714db48361c5a11e2e465b DE-627 ger DE-627 rakwb eng A. A. Chemagin verfasserin aut Distribution of migratory fish in the stream (depth, velocity, body size, predators) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to supplement the available information for the eco-hydraulic approach to designing fish passages, taking into account the taxonomic, dimensional structure, as well as taking into account the presence of predatory fish in the stream, the distribution of migratory fish of the boreal plain faunistic complex (Russian Federation) was studied. Three depth-velocity sections from the shore to the midstream were investigated: 5 m and 27.8 cm/s, 8 m and 44.4 cm/s, 11 m and 55.6 cm/s. Analysis of the migration distribution of fish showed that in the direction from the shore to the midstream, the proportion of representatives of Cyprinidae decreases from 41.8–24.3% and that of Percidae decreases from 25.0–18.4%. For individuals of two groups: the Acipenseridae and Lotidae, Coregonidae and Esocidae, patterns of distribution in the structure of migratory fish are opposite – their share increases with increasing speed and depth characteristics: 23.0–40.2% and 10.2–17.1%, respectively. An assessment of the dimensional structure revealed a feature of increase in the size range of fish from the shore to the midstream: the dominance of small individuals (<10 cm) in the shore area is replaced by the dominance of large fish (< 30 cm) in the area of higher speeds and depths. A significant difference in the distribution for all studied taxonomic fish groups between the shore and the midstream was shown. Thus, it has been established that for Cyprinidae during the migration period, the choice shifts in favour of minimizing energy costs, and the choice to avoid the risk of predation from individuals of the groups: Coregonidae and Esocidae, and also Percidae, shifts in favour of the former. The distribution of perch is influenced by the reduction of energy costs and the simultaneous avoidance of predation and cannibalism. For the fish group Acipenseridae and Lotidae, their predominance in the deeper area is due to their less developed visual orientation mechanism in the stream because they are bottom-living fish species. fish migration; antipredator behaviour; predation risk; body size fish; fishway Science Q In Biosystems Diversity Oles Honchar Dnipro National University, 2017 27(2019), 3, Seite 221-226 (DE-627)1010058657 25202529 nnns volume:27 year:2019 number:3 pages:221-226 https://doi.org/10.15421/011930 kostenfrei https://doaj.org/article/35341ebe9f714db48361c5a11e2e465b kostenfrei https://ecology.dp.ua/index.php/ECO/article/view/995 kostenfrei https://doaj.org/toc/2519-8513 Journal toc kostenfrei https://doaj.org/toc/2520-2529 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2863 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 27 2019 3 221-226 |
allfields_unstemmed |
10.15421/011930 doi (DE-627)DOAJ004429850 (DE-599)DOAJ35341ebe9f714db48361c5a11e2e465b DE-627 ger DE-627 rakwb eng A. A. Chemagin verfasserin aut Distribution of migratory fish in the stream (depth, velocity, body size, predators) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to supplement the available information for the eco-hydraulic approach to designing fish passages, taking into account the taxonomic, dimensional structure, as well as taking into account the presence of predatory fish in the stream, the distribution of migratory fish of the boreal plain faunistic complex (Russian Federation) was studied. Three depth-velocity sections from the shore to the midstream were investigated: 5 m and 27.8 cm/s, 8 m and 44.4 cm/s, 11 m and 55.6 cm/s. Analysis of the migration distribution of fish showed that in the direction from the shore to the midstream, the proportion of representatives of Cyprinidae decreases from 41.8–24.3% and that of Percidae decreases from 25.0–18.4%. For individuals of two groups: the Acipenseridae and Lotidae, Coregonidae and Esocidae, patterns of distribution in the structure of migratory fish are opposite – their share increases with increasing speed and depth characteristics: 23.0–40.2% and 10.2–17.1%, respectively. An assessment of the dimensional structure revealed a feature of increase in the size range of fish from the shore to the midstream: the dominance of small individuals (<10 cm) in the shore area is replaced by the dominance of large fish (< 30 cm) in the area of higher speeds and depths. A significant difference in the distribution for all studied taxonomic fish groups between the shore and the midstream was shown. Thus, it has been established that for Cyprinidae during the migration period, the choice shifts in favour of minimizing energy costs, and the choice to avoid the risk of predation from individuals of the groups: Coregonidae and Esocidae, and also Percidae, shifts in favour of the former. The distribution of perch is influenced by the reduction of energy costs and the simultaneous avoidance of predation and cannibalism. For the fish group Acipenseridae and Lotidae, their predominance in the deeper area is due to their less developed visual orientation mechanism in the stream because they are bottom-living fish species. fish migration; antipredator behaviour; predation risk; body size fish; fishway Science Q In Biosystems Diversity Oles Honchar Dnipro National University, 2017 27(2019), 3, Seite 221-226 (DE-627)1010058657 25202529 nnns volume:27 year:2019 number:3 pages:221-226 https://doi.org/10.15421/011930 kostenfrei https://doaj.org/article/35341ebe9f714db48361c5a11e2e465b kostenfrei https://ecology.dp.ua/index.php/ECO/article/view/995 kostenfrei https://doaj.org/toc/2519-8513 Journal toc kostenfrei https://doaj.org/toc/2520-2529 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2863 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 27 2019 3 221-226 |
allfieldsGer |
10.15421/011930 doi (DE-627)DOAJ004429850 (DE-599)DOAJ35341ebe9f714db48361c5a11e2e465b DE-627 ger DE-627 rakwb eng A. A. Chemagin verfasserin aut Distribution of migratory fish in the stream (depth, velocity, body size, predators) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to supplement the available information for the eco-hydraulic approach to designing fish passages, taking into account the taxonomic, dimensional structure, as well as taking into account the presence of predatory fish in the stream, the distribution of migratory fish of the boreal plain faunistic complex (Russian Federation) was studied. Three depth-velocity sections from the shore to the midstream were investigated: 5 m and 27.8 cm/s, 8 m and 44.4 cm/s, 11 m and 55.6 cm/s. Analysis of the migration distribution of fish showed that in the direction from the shore to the midstream, the proportion of representatives of Cyprinidae decreases from 41.8–24.3% and that of Percidae decreases from 25.0–18.4%. For individuals of two groups: the Acipenseridae and Lotidae, Coregonidae and Esocidae, patterns of distribution in the structure of migratory fish are opposite – their share increases with increasing speed and depth characteristics: 23.0–40.2% and 10.2–17.1%, respectively. An assessment of the dimensional structure revealed a feature of increase in the size range of fish from the shore to the midstream: the dominance of small individuals (<10 cm) in the shore area is replaced by the dominance of large fish (< 30 cm) in the area of higher speeds and depths. A significant difference in the distribution for all studied taxonomic fish groups between the shore and the midstream was shown. Thus, it has been established that for Cyprinidae during the migration period, the choice shifts in favour of minimizing energy costs, and the choice to avoid the risk of predation from individuals of the groups: Coregonidae and Esocidae, and also Percidae, shifts in favour of the former. The distribution of perch is influenced by the reduction of energy costs and the simultaneous avoidance of predation and cannibalism. For the fish group Acipenseridae and Lotidae, their predominance in the deeper area is due to their less developed visual orientation mechanism in the stream because they are bottom-living fish species. fish migration; antipredator behaviour; predation risk; body size fish; fishway Science Q In Biosystems Diversity Oles Honchar Dnipro National University, 2017 27(2019), 3, Seite 221-226 (DE-627)1010058657 25202529 nnns volume:27 year:2019 number:3 pages:221-226 https://doi.org/10.15421/011930 kostenfrei https://doaj.org/article/35341ebe9f714db48361c5a11e2e465b kostenfrei https://ecology.dp.ua/index.php/ECO/article/view/995 kostenfrei https://doaj.org/toc/2519-8513 Journal toc kostenfrei https://doaj.org/toc/2520-2529 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2863 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 27 2019 3 221-226 |
allfieldsSound |
10.15421/011930 doi (DE-627)DOAJ004429850 (DE-599)DOAJ35341ebe9f714db48361c5a11e2e465b DE-627 ger DE-627 rakwb eng A. A. Chemagin verfasserin aut Distribution of migratory fish in the stream (depth, velocity, body size, predators) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to supplement the available information for the eco-hydraulic approach to designing fish passages, taking into account the taxonomic, dimensional structure, as well as taking into account the presence of predatory fish in the stream, the distribution of migratory fish of the boreal plain faunistic complex (Russian Federation) was studied. Three depth-velocity sections from the shore to the midstream were investigated: 5 m and 27.8 cm/s, 8 m and 44.4 cm/s, 11 m and 55.6 cm/s. Analysis of the migration distribution of fish showed that in the direction from the shore to the midstream, the proportion of representatives of Cyprinidae decreases from 41.8–24.3% and that of Percidae decreases from 25.0–18.4%. For individuals of two groups: the Acipenseridae and Lotidae, Coregonidae and Esocidae, patterns of distribution in the structure of migratory fish are opposite – their share increases with increasing speed and depth characteristics: 23.0–40.2% and 10.2–17.1%, respectively. An assessment of the dimensional structure revealed a feature of increase in the size range of fish from the shore to the midstream: the dominance of small individuals (<10 cm) in the shore area is replaced by the dominance of large fish (< 30 cm) in the area of higher speeds and depths. A significant difference in the distribution for all studied taxonomic fish groups between the shore and the midstream was shown. Thus, it has been established that for Cyprinidae during the migration period, the choice shifts in favour of minimizing energy costs, and the choice to avoid the risk of predation from individuals of the groups: Coregonidae and Esocidae, and also Percidae, shifts in favour of the former. The distribution of perch is influenced by the reduction of energy costs and the simultaneous avoidance of predation and cannibalism. For the fish group Acipenseridae and Lotidae, their predominance in the deeper area is due to their less developed visual orientation mechanism in the stream because they are bottom-living fish species. fish migration; antipredator behaviour; predation risk; body size fish; fishway Science Q In Biosystems Diversity Oles Honchar Dnipro National University, 2017 27(2019), 3, Seite 221-226 (DE-627)1010058657 25202529 nnns volume:27 year:2019 number:3 pages:221-226 https://doi.org/10.15421/011930 kostenfrei https://doaj.org/article/35341ebe9f714db48361c5a11e2e465b kostenfrei https://ecology.dp.ua/index.php/ECO/article/view/995 kostenfrei https://doaj.org/toc/2519-8513 Journal toc kostenfrei https://doaj.org/toc/2520-2529 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2863 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 27 2019 3 221-226 |
language |
English |
source |
In Biosystems Diversity 27(2019), 3, Seite 221-226 volume:27 year:2019 number:3 pages:221-226 |
sourceStr |
In Biosystems Diversity 27(2019), 3, Seite 221-226 volume:27 year:2019 number:3 pages:221-226 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
fish migration; antipredator behaviour; predation risk; body size fish; fishway Science Q |
isfreeaccess_bool |
true |
container_title |
Biosystems Diversity |
authorswithroles_txt_mv |
A. A. Chemagin @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
1010058657 |
id |
DOAJ004429850 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ004429850</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307023036.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.15421/011930</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ004429850</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ35341ebe9f714db48361c5a11e2e465b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">A. A. Chemagin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distribution of migratory fish in the stream (depth, velocity, body size, predators)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to supplement the available information for the eco-hydraulic approach to designing fish passages, taking into account the taxonomic, dimensional structure, as well as taking into account the presence of predatory fish in the stream, the distribution of migratory fish of the boreal plain faunistic complex (Russian Federation) was studied. Three depth-velocity sections from the shore to the midstream were investigated: 5 m and 27.8 cm/s, 8 m and 44.4 cm/s, 11 m and 55.6 cm/s. Analysis of the migration distribution of fish showed that in the direction from the shore to the midstream, the proportion of representatives of Cyprinidae decreases from 41.8–24.3% and that of Percidae decreases from 25.0–18.4%. For individuals of two groups: the Acipenseridae and Lotidae, Coregonidae and Esocidae, patterns of distribution in the structure of migratory fish are opposite – their share increases with increasing speed and depth characteristics: 23.0–40.2% and 10.2–17.1%, respectively. An assessment of the dimensional structure revealed a feature of increase in the size range of fish from the shore to the midstream: the dominance of small individuals (<10 cm) in the shore area is replaced by the dominance of large fish (< 30 cm) in the area of higher speeds and depths. A significant difference in the distribution for all studied taxonomic fish groups between the shore and the midstream was shown. Thus, it has been established that for Cyprinidae during the migration period, the choice shifts in favour of minimizing energy costs, and the choice to avoid the risk of predation from individuals of the groups: Coregonidae and Esocidae, and also Percidae, shifts in favour of the former. The distribution of perch is influenced by the reduction of energy costs and the simultaneous avoidance of predation and cannibalism. For the fish group Acipenseridae and Lotidae, their predominance in the deeper area is due to their less developed visual orientation mechanism in the stream because they are bottom-living fish species.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fish migration; antipredator behaviour; predation risk; body size fish; fishway</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biosystems Diversity</subfield><subfield code="d">Oles Honchar Dnipro National University, 2017</subfield><subfield code="g">27(2019), 3, Seite 221-226</subfield><subfield code="w">(DE-627)1010058657</subfield><subfield code="x">25202529</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:221-226</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.15421/011930</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/35341ebe9f714db48361c5a11e2e465b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ecology.dp.ua/index.php/ECO/article/view/995</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2519-8513</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2520-2529</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2863</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="h">221-226</subfield></datafield></record></collection>
|
author |
A. A. Chemagin |
spellingShingle |
A. A. Chemagin misc fish migration; antipredator behaviour; predation risk; body size fish; fishway misc Science misc Q Distribution of migratory fish in the stream (depth, velocity, body size, predators) |
authorStr |
A. A. Chemagin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1010058657 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
25202529 |
topic_title |
Distribution of migratory fish in the stream (depth, velocity, body size, predators) fish migration; antipredator behaviour; predation risk; body size fish; fishway |
topic |
misc fish migration; antipredator behaviour; predation risk; body size fish; fishway misc Science misc Q |
topic_unstemmed |
misc fish migration; antipredator behaviour; predation risk; body size fish; fishway misc Science misc Q |
topic_browse |
misc fish migration; antipredator behaviour; predation risk; body size fish; fishway misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biosystems Diversity |
hierarchy_parent_id |
1010058657 |
hierarchy_top_title |
Biosystems Diversity |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1010058657 |
title |
Distribution of migratory fish in the stream (depth, velocity, body size, predators) |
ctrlnum |
(DE-627)DOAJ004429850 (DE-599)DOAJ35341ebe9f714db48361c5a11e2e465b |
title_full |
Distribution of migratory fish in the stream (depth, velocity, body size, predators) |
author_sort |
A. A. Chemagin |
journal |
Biosystems Diversity |
journalStr |
Biosystems Diversity |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
221 |
author_browse |
A. A. Chemagin |
container_volume |
27 |
format_se |
Elektronische Aufsätze |
author-letter |
A. A. Chemagin |
doi_str_mv |
10.15421/011930 |
title_sort |
distribution of migratory fish in the stream (depth, velocity, body size, predators) |
title_auth |
Distribution of migratory fish in the stream (depth, velocity, body size, predators) |
abstract |
In order to supplement the available information for the eco-hydraulic approach to designing fish passages, taking into account the taxonomic, dimensional structure, as well as taking into account the presence of predatory fish in the stream, the distribution of migratory fish of the boreal plain faunistic complex (Russian Federation) was studied. Three depth-velocity sections from the shore to the midstream were investigated: 5 m and 27.8 cm/s, 8 m and 44.4 cm/s, 11 m and 55.6 cm/s. Analysis of the migration distribution of fish showed that in the direction from the shore to the midstream, the proportion of representatives of Cyprinidae decreases from 41.8–24.3% and that of Percidae decreases from 25.0–18.4%. For individuals of two groups: the Acipenseridae and Lotidae, Coregonidae and Esocidae, patterns of distribution in the structure of migratory fish are opposite – their share increases with increasing speed and depth characteristics: 23.0–40.2% and 10.2–17.1%, respectively. An assessment of the dimensional structure revealed a feature of increase in the size range of fish from the shore to the midstream: the dominance of small individuals (<10 cm) in the shore area is replaced by the dominance of large fish (< 30 cm) in the area of higher speeds and depths. A significant difference in the distribution for all studied taxonomic fish groups between the shore and the midstream was shown. Thus, it has been established that for Cyprinidae during the migration period, the choice shifts in favour of minimizing energy costs, and the choice to avoid the risk of predation from individuals of the groups: Coregonidae and Esocidae, and also Percidae, shifts in favour of the former. The distribution of perch is influenced by the reduction of energy costs and the simultaneous avoidance of predation and cannibalism. For the fish group Acipenseridae and Lotidae, their predominance in the deeper area is due to their less developed visual orientation mechanism in the stream because they are bottom-living fish species. |
abstractGer |
In order to supplement the available information for the eco-hydraulic approach to designing fish passages, taking into account the taxonomic, dimensional structure, as well as taking into account the presence of predatory fish in the stream, the distribution of migratory fish of the boreal plain faunistic complex (Russian Federation) was studied. Three depth-velocity sections from the shore to the midstream were investigated: 5 m and 27.8 cm/s, 8 m and 44.4 cm/s, 11 m and 55.6 cm/s. Analysis of the migration distribution of fish showed that in the direction from the shore to the midstream, the proportion of representatives of Cyprinidae decreases from 41.8–24.3% and that of Percidae decreases from 25.0–18.4%. For individuals of two groups: the Acipenseridae and Lotidae, Coregonidae and Esocidae, patterns of distribution in the structure of migratory fish are opposite – their share increases with increasing speed and depth characteristics: 23.0–40.2% and 10.2–17.1%, respectively. An assessment of the dimensional structure revealed a feature of increase in the size range of fish from the shore to the midstream: the dominance of small individuals (<10 cm) in the shore area is replaced by the dominance of large fish (< 30 cm) in the area of higher speeds and depths. A significant difference in the distribution for all studied taxonomic fish groups between the shore and the midstream was shown. Thus, it has been established that for Cyprinidae during the migration period, the choice shifts in favour of minimizing energy costs, and the choice to avoid the risk of predation from individuals of the groups: Coregonidae and Esocidae, and also Percidae, shifts in favour of the former. The distribution of perch is influenced by the reduction of energy costs and the simultaneous avoidance of predation and cannibalism. For the fish group Acipenseridae and Lotidae, their predominance in the deeper area is due to their less developed visual orientation mechanism in the stream because they are bottom-living fish species. |
abstract_unstemmed |
In order to supplement the available information for the eco-hydraulic approach to designing fish passages, taking into account the taxonomic, dimensional structure, as well as taking into account the presence of predatory fish in the stream, the distribution of migratory fish of the boreal plain faunistic complex (Russian Federation) was studied. Three depth-velocity sections from the shore to the midstream were investigated: 5 m and 27.8 cm/s, 8 m and 44.4 cm/s, 11 m and 55.6 cm/s. Analysis of the migration distribution of fish showed that in the direction from the shore to the midstream, the proportion of representatives of Cyprinidae decreases from 41.8–24.3% and that of Percidae decreases from 25.0–18.4%. For individuals of two groups: the Acipenseridae and Lotidae, Coregonidae and Esocidae, patterns of distribution in the structure of migratory fish are opposite – their share increases with increasing speed and depth characteristics: 23.0–40.2% and 10.2–17.1%, respectively. An assessment of the dimensional structure revealed a feature of increase in the size range of fish from the shore to the midstream: the dominance of small individuals (<10 cm) in the shore area is replaced by the dominance of large fish (< 30 cm) in the area of higher speeds and depths. A significant difference in the distribution for all studied taxonomic fish groups between the shore and the midstream was shown. Thus, it has been established that for Cyprinidae during the migration period, the choice shifts in favour of minimizing energy costs, and the choice to avoid the risk of predation from individuals of the groups: Coregonidae and Esocidae, and also Percidae, shifts in favour of the former. The distribution of perch is influenced by the reduction of energy costs and the simultaneous avoidance of predation and cannibalism. For the fish group Acipenseridae and Lotidae, their predominance in the deeper area is due to their less developed visual orientation mechanism in the stream because they are bottom-living fish species. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2863 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Distribution of migratory fish in the stream (depth, velocity, body size, predators) |
url |
https://doi.org/10.15421/011930 https://doaj.org/article/35341ebe9f714db48361c5a11e2e465b https://ecology.dp.ua/index.php/ECO/article/view/995 https://doaj.org/toc/2519-8513 https://doaj.org/toc/2520-2529 |
remote_bool |
true |
ppnlink |
1010058657 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.15421/011930 |
up_date |
2024-07-03T23:40:49.698Z |
_version_ |
1803603200916324352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ004429850</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307023036.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.15421/011930</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ004429850</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ35341ebe9f714db48361c5a11e2e465b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">A. A. Chemagin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distribution of migratory fish in the stream (depth, velocity, body size, predators)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to supplement the available information for the eco-hydraulic approach to designing fish passages, taking into account the taxonomic, dimensional structure, as well as taking into account the presence of predatory fish in the stream, the distribution of migratory fish of the boreal plain faunistic complex (Russian Federation) was studied. Three depth-velocity sections from the shore to the midstream were investigated: 5 m and 27.8 cm/s, 8 m and 44.4 cm/s, 11 m and 55.6 cm/s. Analysis of the migration distribution of fish showed that in the direction from the shore to the midstream, the proportion of representatives of Cyprinidae decreases from 41.8–24.3% and that of Percidae decreases from 25.0–18.4%. For individuals of two groups: the Acipenseridae and Lotidae, Coregonidae and Esocidae, patterns of distribution in the structure of migratory fish are opposite – their share increases with increasing speed and depth characteristics: 23.0–40.2% and 10.2–17.1%, respectively. An assessment of the dimensional structure revealed a feature of increase in the size range of fish from the shore to the midstream: the dominance of small individuals (<10 cm) in the shore area is replaced by the dominance of large fish (< 30 cm) in the area of higher speeds and depths. A significant difference in the distribution for all studied taxonomic fish groups between the shore and the midstream was shown. Thus, it has been established that for Cyprinidae during the migration period, the choice shifts in favour of minimizing energy costs, and the choice to avoid the risk of predation from individuals of the groups: Coregonidae and Esocidae, and also Percidae, shifts in favour of the former. The distribution of perch is influenced by the reduction of energy costs and the simultaneous avoidance of predation and cannibalism. For the fish group Acipenseridae and Lotidae, their predominance in the deeper area is due to their less developed visual orientation mechanism in the stream because they are bottom-living fish species.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fish migration; antipredator behaviour; predation risk; body size fish; fishway</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biosystems Diversity</subfield><subfield code="d">Oles Honchar Dnipro National University, 2017</subfield><subfield code="g">27(2019), 3, Seite 221-226</subfield><subfield code="w">(DE-627)1010058657</subfield><subfield code="x">25202529</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:221-226</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.15421/011930</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/35341ebe9f714db48361c5a11e2e465b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ecology.dp.ua/index.php/ECO/article/view/995</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2519-8513</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2520-2529</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2863</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="h">221-226</subfield></datafield></record></collection>
|
score |
7.4007587 |