Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis
The increasing use of targeted therapy (TT) has resulted in prolonged disease control and survival in many metastatic cancers. In parallel, stereotactic radiotherapy (SRT) is increasingly performed in patients receiving TT to obtain a durable control of resistant metastases, and thereby to prolong t...
Ausführliche Beschreibung
Autor*in: |
Stephanie G. C. Kroeze [verfasserIn] Corinna Fritz [verfasserIn] Jana Schaule [verfasserIn] Oliver Blanck [verfasserIn] Klaus Henning Kahl [verfasserIn] David Kaul [verfasserIn] Shankar Siva [verfasserIn] Sabine Gerum [verfasserIn] An Claes [verfasserIn] Nora Sundahl [verfasserIn] Sonja Adebahr [verfasserIn] Susanne Stera [verfasserIn] Markus M. Schymalla [verfasserIn] Nasrin Abbasi-Senger [verfasserIn] Daniel Buergy [verfasserIn] Michael Geier [verfasserIn] Marcella Szuecs [verfasserIn] Fabian Lohaus [verfasserIn] Guido Henke [verfasserIn] Stephanie E. Combs [verfasserIn] Matthias Guckenberger [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Cancers - MDPI AG, 2010, 13(2021), 19, p 4780 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:19, p 4780 |
Links: |
---|
DOI / URN: |
10.3390/cancers13194780 |
---|
Katalog-ID: |
DOAJ00464834X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ00464834X | ||
003 | DE-627 | ||
005 | 20240412141050.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/cancers13194780 |2 doi | |
035 | |a (DE-627)DOAJ00464834X | ||
035 | |a (DE-599)DOAJ3ac93b05d41045e48ae198da684d9637 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC254-282 | |
100 | 0 | |a Stephanie G. C. Kroeze |e verfasserin |4 aut | |
245 | 1 | 0 | |a Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The increasing use of targeted therapy (TT) has resulted in prolonged disease control and survival in many metastatic cancers. In parallel, stereotactic radiotherapy (SRT) is increasingly performed in patients receiving TT to obtain a durable control of resistant metastases, and thereby to prolong the time to disseminated disease progression and switch of systemic therapy. The aims of this study were to analyze the safety and efficacy of SRT combined with TT in metastatic cancer patients and to assess the influence of continuous vs. interrupted TT during metastasis-directed SRT. The data of 454 SRTs in 158 patients from the international multicenter database (TOaSTT) on metastatic cancer patients treated with SRT and concurrent TT (within 30 days) were analyzed using Kaplan–Meier and log rank testing. Toxicity was defined by the CTCAE v4.03 criteria. The median FU was 19.9 mo (range 1–102 mo); 1y OS, PFS and LC were 59%, 24% and 84%, respectively. Median TTS was 25.5 mo (95% CI 11–40). TT was started before SRT in 77% of patients. TT was interrupted during SRT in 44% of patients, with a median interruption of 7 (range 1–42) days. There was no significant difference in OS or PFS whether TT was temporarily interrupted during SRT or not. Any-grade acute and late SRT-related toxicity occurred in 63 (40%) and 52 (33%) patients, respectively. The highest toxicity rates were observed for the combination of SRT and EGFRi or BRAF/MEKi, and any-grade toxicity was significantly increased when EGFRi (<i<p</i< = 0.016) or BRAF/MEKi (<i<p</i< = 0.009) were continued during SRT. Severe (≥grade 3) acute and late SRT-related toxicity were observed in 5 (3%) and 7 (4%) patients, respectively, most frequently in patients treated with EGFRi or BRAF/MEKi and in the intracranial cohort. There was no significant difference in severe toxicity whether TT was interrupted before and after SRT or not. In conclusion, SRT and continuous vs. interrupted TT in metastatic cancer patients did not influence OS or PFS. Overall, severe toxicity of combined treatment was rare; a potentially increased toxicity after SRT and continuous treatment with EGFR inhibitors or BRAF(±MEK) inhibitors requires further evaluation. | ||
650 | 4 | |a stereotactic | |
650 | 4 | |a metastasis-directed radiotherapy | |
650 | 4 | |a targeted therapy | |
650 | 4 | |a concurrent | |
650 | 4 | |a tyrosine kinase inhibitors | |
650 | 4 | |a BRAF inhibitors | |
653 | 0 | |a Neoplasms. Tumors. Oncology. Including cancer and carcinogens | |
700 | 0 | |a Corinna Fritz |e verfasserin |4 aut | |
700 | 0 | |a Jana Schaule |e verfasserin |4 aut | |
700 | 0 | |a Oliver Blanck |e verfasserin |4 aut | |
700 | 0 | |a Klaus Henning Kahl |e verfasserin |4 aut | |
700 | 0 | |a David Kaul |e verfasserin |4 aut | |
700 | 0 | |a Shankar Siva |e verfasserin |4 aut | |
700 | 0 | |a Sabine Gerum |e verfasserin |4 aut | |
700 | 0 | |a An Claes |e verfasserin |4 aut | |
700 | 0 | |a Nora Sundahl |e verfasserin |4 aut | |
700 | 0 | |a Sonja Adebahr |e verfasserin |4 aut | |
700 | 0 | |a Susanne Stera |e verfasserin |4 aut | |
700 | 0 | |a Markus M. Schymalla |e verfasserin |4 aut | |
700 | 0 | |a Nasrin Abbasi-Senger |e verfasserin |4 aut | |
700 | 0 | |a Daniel Buergy |e verfasserin |4 aut | |
700 | 0 | |a Michael Geier |e verfasserin |4 aut | |
700 | 0 | |a Marcella Szuecs |e verfasserin |4 aut | |
700 | 0 | |a Fabian Lohaus |e verfasserin |4 aut | |
700 | 0 | |a Guido Henke |e verfasserin |4 aut | |
700 | 0 | |a Stephanie E. Combs |e verfasserin |4 aut | |
700 | 0 | |a Matthias Guckenberger |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Cancers |d MDPI AG, 2010 |g 13(2021), 19, p 4780 |w (DE-627)614095670 |w (DE-600)2527080-1 |x 20726694 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:19, p 4780 |
856 | 4 | 0 | |u https://doi.org/10.3390/cancers13194780 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3ac93b05d41045e48ae198da684d9637 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-6694/13/19/4780 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-6694 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 19, p 4780 |
author_variant |
s g c k sgck c f cf j s js o b ob k h k khk d k dk s s ss s g sg a c ac n s ns s a sa s s ss m m s mms n a s nas d b db m g mg m s ms f l fl g h gh s e c sec m g mg |
---|---|
matchkey_str |
article:20726694:2021----::otnevruitrutdagtdhrpdrnmtsaidrceseetcirdohrpaersetv |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
RC |
publishDate |
2021 |
allfields |
10.3390/cancers13194780 doi (DE-627)DOAJ00464834X (DE-599)DOAJ3ac93b05d41045e48ae198da684d9637 DE-627 ger DE-627 rakwb eng RC254-282 Stephanie G. C. Kroeze verfasserin aut Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increasing use of targeted therapy (TT) has resulted in prolonged disease control and survival in many metastatic cancers. In parallel, stereotactic radiotherapy (SRT) is increasingly performed in patients receiving TT to obtain a durable control of resistant metastases, and thereby to prolong the time to disseminated disease progression and switch of systemic therapy. The aims of this study were to analyze the safety and efficacy of SRT combined with TT in metastatic cancer patients and to assess the influence of continuous vs. interrupted TT during metastasis-directed SRT. The data of 454 SRTs in 158 patients from the international multicenter database (TOaSTT) on metastatic cancer patients treated with SRT and concurrent TT (within 30 days) were analyzed using Kaplan–Meier and log rank testing. Toxicity was defined by the CTCAE v4.03 criteria. The median FU was 19.9 mo (range 1–102 mo); 1y OS, PFS and LC were 59%, 24% and 84%, respectively. Median TTS was 25.5 mo (95% CI 11–40). TT was started before SRT in 77% of patients. TT was interrupted during SRT in 44% of patients, with a median interruption of 7 (range 1–42) days. There was no significant difference in OS or PFS whether TT was temporarily interrupted during SRT or not. Any-grade acute and late SRT-related toxicity occurred in 63 (40%) and 52 (33%) patients, respectively. The highest toxicity rates were observed for the combination of SRT and EGFRi or BRAF/MEKi, and any-grade toxicity was significantly increased when EGFRi (<i<p</i< = 0.016) or BRAF/MEKi (<i<p</i< = 0.009) were continued during SRT. Severe (≥grade 3) acute and late SRT-related toxicity were observed in 5 (3%) and 7 (4%) patients, respectively, most frequently in patients treated with EGFRi or BRAF/MEKi and in the intracranial cohort. There was no significant difference in severe toxicity whether TT was interrupted before and after SRT or not. In conclusion, SRT and continuous vs. interrupted TT in metastatic cancer patients did not influence OS or PFS. Overall, severe toxicity of combined treatment was rare; a potentially increased toxicity after SRT and continuous treatment with EGFR inhibitors or BRAF(±MEK) inhibitors requires further evaluation. stereotactic metastasis-directed radiotherapy targeted therapy concurrent tyrosine kinase inhibitors BRAF inhibitors Neoplasms. Tumors. Oncology. Including cancer and carcinogens Corinna Fritz verfasserin aut Jana Schaule verfasserin aut Oliver Blanck verfasserin aut Klaus Henning Kahl verfasserin aut David Kaul verfasserin aut Shankar Siva verfasserin aut Sabine Gerum verfasserin aut An Claes verfasserin aut Nora Sundahl verfasserin aut Sonja Adebahr verfasserin aut Susanne Stera verfasserin aut Markus M. Schymalla verfasserin aut Nasrin Abbasi-Senger verfasserin aut Daniel Buergy verfasserin aut Michael Geier verfasserin aut Marcella Szuecs verfasserin aut Fabian Lohaus verfasserin aut Guido Henke verfasserin aut Stephanie E. Combs verfasserin aut Matthias Guckenberger verfasserin aut In Cancers MDPI AG, 2010 13(2021), 19, p 4780 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:13 year:2021 number:19, p 4780 https://doi.org/10.3390/cancers13194780 kostenfrei https://doaj.org/article/3ac93b05d41045e48ae198da684d9637 kostenfrei https://www.mdpi.com/2072-6694/13/19/4780 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 19, p 4780 |
spelling |
10.3390/cancers13194780 doi (DE-627)DOAJ00464834X (DE-599)DOAJ3ac93b05d41045e48ae198da684d9637 DE-627 ger DE-627 rakwb eng RC254-282 Stephanie G. C. Kroeze verfasserin aut Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increasing use of targeted therapy (TT) has resulted in prolonged disease control and survival in many metastatic cancers. In parallel, stereotactic radiotherapy (SRT) is increasingly performed in patients receiving TT to obtain a durable control of resistant metastases, and thereby to prolong the time to disseminated disease progression and switch of systemic therapy. The aims of this study were to analyze the safety and efficacy of SRT combined with TT in metastatic cancer patients and to assess the influence of continuous vs. interrupted TT during metastasis-directed SRT. The data of 454 SRTs in 158 patients from the international multicenter database (TOaSTT) on metastatic cancer patients treated with SRT and concurrent TT (within 30 days) were analyzed using Kaplan–Meier and log rank testing. Toxicity was defined by the CTCAE v4.03 criteria. The median FU was 19.9 mo (range 1–102 mo); 1y OS, PFS and LC were 59%, 24% and 84%, respectively. Median TTS was 25.5 mo (95% CI 11–40). TT was started before SRT in 77% of patients. TT was interrupted during SRT in 44% of patients, with a median interruption of 7 (range 1–42) days. There was no significant difference in OS or PFS whether TT was temporarily interrupted during SRT or not. Any-grade acute and late SRT-related toxicity occurred in 63 (40%) and 52 (33%) patients, respectively. The highest toxicity rates were observed for the combination of SRT and EGFRi or BRAF/MEKi, and any-grade toxicity was significantly increased when EGFRi (<i<p</i< = 0.016) or BRAF/MEKi (<i<p</i< = 0.009) were continued during SRT. Severe (≥grade 3) acute and late SRT-related toxicity were observed in 5 (3%) and 7 (4%) patients, respectively, most frequently in patients treated with EGFRi or BRAF/MEKi and in the intracranial cohort. There was no significant difference in severe toxicity whether TT was interrupted before and after SRT or not. In conclusion, SRT and continuous vs. interrupted TT in metastatic cancer patients did not influence OS or PFS. Overall, severe toxicity of combined treatment was rare; a potentially increased toxicity after SRT and continuous treatment with EGFR inhibitors or BRAF(±MEK) inhibitors requires further evaluation. stereotactic metastasis-directed radiotherapy targeted therapy concurrent tyrosine kinase inhibitors BRAF inhibitors Neoplasms. Tumors. Oncology. Including cancer and carcinogens Corinna Fritz verfasserin aut Jana Schaule verfasserin aut Oliver Blanck verfasserin aut Klaus Henning Kahl verfasserin aut David Kaul verfasserin aut Shankar Siva verfasserin aut Sabine Gerum verfasserin aut An Claes verfasserin aut Nora Sundahl verfasserin aut Sonja Adebahr verfasserin aut Susanne Stera verfasserin aut Markus M. Schymalla verfasserin aut Nasrin Abbasi-Senger verfasserin aut Daniel Buergy verfasserin aut Michael Geier verfasserin aut Marcella Szuecs verfasserin aut Fabian Lohaus verfasserin aut Guido Henke verfasserin aut Stephanie E. Combs verfasserin aut Matthias Guckenberger verfasserin aut In Cancers MDPI AG, 2010 13(2021), 19, p 4780 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:13 year:2021 number:19, p 4780 https://doi.org/10.3390/cancers13194780 kostenfrei https://doaj.org/article/3ac93b05d41045e48ae198da684d9637 kostenfrei https://www.mdpi.com/2072-6694/13/19/4780 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 19, p 4780 |
allfields_unstemmed |
10.3390/cancers13194780 doi (DE-627)DOAJ00464834X (DE-599)DOAJ3ac93b05d41045e48ae198da684d9637 DE-627 ger DE-627 rakwb eng RC254-282 Stephanie G. C. Kroeze verfasserin aut Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increasing use of targeted therapy (TT) has resulted in prolonged disease control and survival in many metastatic cancers. In parallel, stereotactic radiotherapy (SRT) is increasingly performed in patients receiving TT to obtain a durable control of resistant metastases, and thereby to prolong the time to disseminated disease progression and switch of systemic therapy. The aims of this study were to analyze the safety and efficacy of SRT combined with TT in metastatic cancer patients and to assess the influence of continuous vs. interrupted TT during metastasis-directed SRT. The data of 454 SRTs in 158 patients from the international multicenter database (TOaSTT) on metastatic cancer patients treated with SRT and concurrent TT (within 30 days) were analyzed using Kaplan–Meier and log rank testing. Toxicity was defined by the CTCAE v4.03 criteria. The median FU was 19.9 mo (range 1–102 mo); 1y OS, PFS and LC were 59%, 24% and 84%, respectively. Median TTS was 25.5 mo (95% CI 11–40). TT was started before SRT in 77% of patients. TT was interrupted during SRT in 44% of patients, with a median interruption of 7 (range 1–42) days. There was no significant difference in OS or PFS whether TT was temporarily interrupted during SRT or not. Any-grade acute and late SRT-related toxicity occurred in 63 (40%) and 52 (33%) patients, respectively. The highest toxicity rates were observed for the combination of SRT and EGFRi or BRAF/MEKi, and any-grade toxicity was significantly increased when EGFRi (<i<p</i< = 0.016) or BRAF/MEKi (<i<p</i< = 0.009) were continued during SRT. Severe (≥grade 3) acute and late SRT-related toxicity were observed in 5 (3%) and 7 (4%) patients, respectively, most frequently in patients treated with EGFRi or BRAF/MEKi and in the intracranial cohort. There was no significant difference in severe toxicity whether TT was interrupted before and after SRT or not. In conclusion, SRT and continuous vs. interrupted TT in metastatic cancer patients did not influence OS or PFS. Overall, severe toxicity of combined treatment was rare; a potentially increased toxicity after SRT and continuous treatment with EGFR inhibitors or BRAF(±MEK) inhibitors requires further evaluation. stereotactic metastasis-directed radiotherapy targeted therapy concurrent tyrosine kinase inhibitors BRAF inhibitors Neoplasms. Tumors. Oncology. Including cancer and carcinogens Corinna Fritz verfasserin aut Jana Schaule verfasserin aut Oliver Blanck verfasserin aut Klaus Henning Kahl verfasserin aut David Kaul verfasserin aut Shankar Siva verfasserin aut Sabine Gerum verfasserin aut An Claes verfasserin aut Nora Sundahl verfasserin aut Sonja Adebahr verfasserin aut Susanne Stera verfasserin aut Markus M. Schymalla verfasserin aut Nasrin Abbasi-Senger verfasserin aut Daniel Buergy verfasserin aut Michael Geier verfasserin aut Marcella Szuecs verfasserin aut Fabian Lohaus verfasserin aut Guido Henke verfasserin aut Stephanie E. Combs verfasserin aut Matthias Guckenberger verfasserin aut In Cancers MDPI AG, 2010 13(2021), 19, p 4780 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:13 year:2021 number:19, p 4780 https://doi.org/10.3390/cancers13194780 kostenfrei https://doaj.org/article/3ac93b05d41045e48ae198da684d9637 kostenfrei https://www.mdpi.com/2072-6694/13/19/4780 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 19, p 4780 |
allfieldsGer |
10.3390/cancers13194780 doi (DE-627)DOAJ00464834X (DE-599)DOAJ3ac93b05d41045e48ae198da684d9637 DE-627 ger DE-627 rakwb eng RC254-282 Stephanie G. C. Kroeze verfasserin aut Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increasing use of targeted therapy (TT) has resulted in prolonged disease control and survival in many metastatic cancers. In parallel, stereotactic radiotherapy (SRT) is increasingly performed in patients receiving TT to obtain a durable control of resistant metastases, and thereby to prolong the time to disseminated disease progression and switch of systemic therapy. The aims of this study were to analyze the safety and efficacy of SRT combined with TT in metastatic cancer patients and to assess the influence of continuous vs. interrupted TT during metastasis-directed SRT. The data of 454 SRTs in 158 patients from the international multicenter database (TOaSTT) on metastatic cancer patients treated with SRT and concurrent TT (within 30 days) were analyzed using Kaplan–Meier and log rank testing. Toxicity was defined by the CTCAE v4.03 criteria. The median FU was 19.9 mo (range 1–102 mo); 1y OS, PFS and LC were 59%, 24% and 84%, respectively. Median TTS was 25.5 mo (95% CI 11–40). TT was started before SRT in 77% of patients. TT was interrupted during SRT in 44% of patients, with a median interruption of 7 (range 1–42) days. There was no significant difference in OS or PFS whether TT was temporarily interrupted during SRT or not. Any-grade acute and late SRT-related toxicity occurred in 63 (40%) and 52 (33%) patients, respectively. The highest toxicity rates were observed for the combination of SRT and EGFRi or BRAF/MEKi, and any-grade toxicity was significantly increased when EGFRi (<i<p</i< = 0.016) or BRAF/MEKi (<i<p</i< = 0.009) were continued during SRT. Severe (≥grade 3) acute and late SRT-related toxicity were observed in 5 (3%) and 7 (4%) patients, respectively, most frequently in patients treated with EGFRi or BRAF/MEKi and in the intracranial cohort. There was no significant difference in severe toxicity whether TT was interrupted before and after SRT or not. In conclusion, SRT and continuous vs. interrupted TT in metastatic cancer patients did not influence OS or PFS. Overall, severe toxicity of combined treatment was rare; a potentially increased toxicity after SRT and continuous treatment with EGFR inhibitors or BRAF(±MEK) inhibitors requires further evaluation. stereotactic metastasis-directed radiotherapy targeted therapy concurrent tyrosine kinase inhibitors BRAF inhibitors Neoplasms. Tumors. Oncology. Including cancer and carcinogens Corinna Fritz verfasserin aut Jana Schaule verfasserin aut Oliver Blanck verfasserin aut Klaus Henning Kahl verfasserin aut David Kaul verfasserin aut Shankar Siva verfasserin aut Sabine Gerum verfasserin aut An Claes verfasserin aut Nora Sundahl verfasserin aut Sonja Adebahr verfasserin aut Susanne Stera verfasserin aut Markus M. Schymalla verfasserin aut Nasrin Abbasi-Senger verfasserin aut Daniel Buergy verfasserin aut Michael Geier verfasserin aut Marcella Szuecs verfasserin aut Fabian Lohaus verfasserin aut Guido Henke verfasserin aut Stephanie E. Combs verfasserin aut Matthias Guckenberger verfasserin aut In Cancers MDPI AG, 2010 13(2021), 19, p 4780 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:13 year:2021 number:19, p 4780 https://doi.org/10.3390/cancers13194780 kostenfrei https://doaj.org/article/3ac93b05d41045e48ae198da684d9637 kostenfrei https://www.mdpi.com/2072-6694/13/19/4780 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 19, p 4780 |
allfieldsSound |
10.3390/cancers13194780 doi (DE-627)DOAJ00464834X (DE-599)DOAJ3ac93b05d41045e48ae198da684d9637 DE-627 ger DE-627 rakwb eng RC254-282 Stephanie G. C. Kroeze verfasserin aut Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increasing use of targeted therapy (TT) has resulted in prolonged disease control and survival in many metastatic cancers. In parallel, stereotactic radiotherapy (SRT) is increasingly performed in patients receiving TT to obtain a durable control of resistant metastases, and thereby to prolong the time to disseminated disease progression and switch of systemic therapy. The aims of this study were to analyze the safety and efficacy of SRT combined with TT in metastatic cancer patients and to assess the influence of continuous vs. interrupted TT during metastasis-directed SRT. The data of 454 SRTs in 158 patients from the international multicenter database (TOaSTT) on metastatic cancer patients treated with SRT and concurrent TT (within 30 days) were analyzed using Kaplan–Meier and log rank testing. Toxicity was defined by the CTCAE v4.03 criteria. The median FU was 19.9 mo (range 1–102 mo); 1y OS, PFS and LC were 59%, 24% and 84%, respectively. Median TTS was 25.5 mo (95% CI 11–40). TT was started before SRT in 77% of patients. TT was interrupted during SRT in 44% of patients, with a median interruption of 7 (range 1–42) days. There was no significant difference in OS or PFS whether TT was temporarily interrupted during SRT or not. Any-grade acute and late SRT-related toxicity occurred in 63 (40%) and 52 (33%) patients, respectively. The highest toxicity rates were observed for the combination of SRT and EGFRi or BRAF/MEKi, and any-grade toxicity was significantly increased when EGFRi (<i<p</i< = 0.016) or BRAF/MEKi (<i<p</i< = 0.009) were continued during SRT. Severe (≥grade 3) acute and late SRT-related toxicity were observed in 5 (3%) and 7 (4%) patients, respectively, most frequently in patients treated with EGFRi or BRAF/MEKi and in the intracranial cohort. There was no significant difference in severe toxicity whether TT was interrupted before and after SRT or not. In conclusion, SRT and continuous vs. interrupted TT in metastatic cancer patients did not influence OS or PFS. Overall, severe toxicity of combined treatment was rare; a potentially increased toxicity after SRT and continuous treatment with EGFR inhibitors or BRAF(±MEK) inhibitors requires further evaluation. stereotactic metastasis-directed radiotherapy targeted therapy concurrent tyrosine kinase inhibitors BRAF inhibitors Neoplasms. Tumors. Oncology. Including cancer and carcinogens Corinna Fritz verfasserin aut Jana Schaule verfasserin aut Oliver Blanck verfasserin aut Klaus Henning Kahl verfasserin aut David Kaul verfasserin aut Shankar Siva verfasserin aut Sabine Gerum verfasserin aut An Claes verfasserin aut Nora Sundahl verfasserin aut Sonja Adebahr verfasserin aut Susanne Stera verfasserin aut Markus M. Schymalla verfasserin aut Nasrin Abbasi-Senger verfasserin aut Daniel Buergy verfasserin aut Michael Geier verfasserin aut Marcella Szuecs verfasserin aut Fabian Lohaus verfasserin aut Guido Henke verfasserin aut Stephanie E. Combs verfasserin aut Matthias Guckenberger verfasserin aut In Cancers MDPI AG, 2010 13(2021), 19, p 4780 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:13 year:2021 number:19, p 4780 https://doi.org/10.3390/cancers13194780 kostenfrei https://doaj.org/article/3ac93b05d41045e48ae198da684d9637 kostenfrei https://www.mdpi.com/2072-6694/13/19/4780 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 19, p 4780 |
language |
English |
source |
In Cancers 13(2021), 19, p 4780 volume:13 year:2021 number:19, p 4780 |
sourceStr |
In Cancers 13(2021), 19, p 4780 volume:13 year:2021 number:19, p 4780 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
stereotactic metastasis-directed radiotherapy targeted therapy concurrent tyrosine kinase inhibitors BRAF inhibitors Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
isfreeaccess_bool |
true |
container_title |
Cancers |
authorswithroles_txt_mv |
Stephanie G. C. Kroeze @@aut@@ Corinna Fritz @@aut@@ Jana Schaule @@aut@@ Oliver Blanck @@aut@@ Klaus Henning Kahl @@aut@@ David Kaul @@aut@@ Shankar Siva @@aut@@ Sabine Gerum @@aut@@ An Claes @@aut@@ Nora Sundahl @@aut@@ Sonja Adebahr @@aut@@ Susanne Stera @@aut@@ Markus M. Schymalla @@aut@@ Nasrin Abbasi-Senger @@aut@@ Daniel Buergy @@aut@@ Michael Geier @@aut@@ Marcella Szuecs @@aut@@ Fabian Lohaus @@aut@@ Guido Henke @@aut@@ Stephanie E. Combs @@aut@@ Matthias Guckenberger @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
614095670 |
id |
DOAJ00464834X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ00464834X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412141050.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cancers13194780</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ00464834X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3ac93b05d41045e48ae198da684d9637</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Stephanie G. C. Kroeze</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The increasing use of targeted therapy (TT) has resulted in prolonged disease control and survival in many metastatic cancers. In parallel, stereotactic radiotherapy (SRT) is increasingly performed in patients receiving TT to obtain a durable control of resistant metastases, and thereby to prolong the time to disseminated disease progression and switch of systemic therapy. The aims of this study were to analyze the safety and efficacy of SRT combined with TT in metastatic cancer patients and to assess the influence of continuous vs. interrupted TT during metastasis-directed SRT. The data of 454 SRTs in 158 patients from the international multicenter database (TOaSTT) on metastatic cancer patients treated with SRT and concurrent TT (within 30 days) were analyzed using Kaplan–Meier and log rank testing. Toxicity was defined by the CTCAE v4.03 criteria. The median FU was 19.9 mo (range 1–102 mo); 1y OS, PFS and LC were 59%, 24% and 84%, respectively. Median TTS was 25.5 mo (95% CI 11–40). TT was started before SRT in 77% of patients. TT was interrupted during SRT in 44% of patients, with a median interruption of 7 (range 1–42) days. There was no significant difference in OS or PFS whether TT was temporarily interrupted during SRT or not. Any-grade acute and late SRT-related toxicity occurred in 63 (40%) and 52 (33%) patients, respectively. The highest toxicity rates were observed for the combination of SRT and EGFRi or BRAF/MEKi, and any-grade toxicity was significantly increased when EGFRi (<i<p</i< = 0.016) or BRAF/MEKi (<i<p</i< = 0.009) were continued during SRT. Severe (≥grade 3) acute and late SRT-related toxicity were observed in 5 (3%) and 7 (4%) patients, respectively, most frequently in patients treated with EGFRi or BRAF/MEKi and in the intracranial cohort. There was no significant difference in severe toxicity whether TT was interrupted before and after SRT or not. In conclusion, SRT and continuous vs. interrupted TT in metastatic cancer patients did not influence OS or PFS. Overall, severe toxicity of combined treatment was rare; a potentially increased toxicity after SRT and continuous treatment with EGFR inhibitors or BRAF(±MEK) inhibitors requires further evaluation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stereotactic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metastasis-directed radiotherapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">targeted therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">concurrent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tyrosine kinase inhibitors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BRAF inhibitors</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Corinna Fritz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jana Schaule</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oliver Blanck</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Klaus Henning Kahl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Kaul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shankar Siva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sabine Gerum</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">An Claes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nora Sundahl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sonja Adebahr</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Susanne Stera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Markus M. Schymalla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nasrin Abbasi-Senger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel Buergy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael Geier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcella Szuecs</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fabian Lohaus</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guido Henke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephanie E. Combs</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matthias Guckenberger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cancers</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2021), 19, p 4780</subfield><subfield code="w">(DE-627)614095670</subfield><subfield code="w">(DE-600)2527080-1</subfield><subfield code="x">20726694</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:19, p 4780</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cancers13194780</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3ac93b05d41045e48ae198da684d9637</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-6694/13/19/4780</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-6694</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">19, p 4780</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Stephanie G. C. Kroeze |
spellingShingle |
Stephanie G. C. Kroeze misc RC254-282 misc stereotactic misc metastasis-directed radiotherapy misc targeted therapy misc concurrent misc tyrosine kinase inhibitors misc BRAF inhibitors misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis |
authorStr |
Stephanie G. C. Kroeze |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)614095670 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC254-282 |
illustrated |
Not Illustrated |
issn |
20726694 |
topic_title |
RC254-282 Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis stereotactic metastasis-directed radiotherapy targeted therapy concurrent tyrosine kinase inhibitors BRAF inhibitors |
topic |
misc RC254-282 misc stereotactic misc metastasis-directed radiotherapy misc targeted therapy misc concurrent misc tyrosine kinase inhibitors misc BRAF inhibitors misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_unstemmed |
misc RC254-282 misc stereotactic misc metastasis-directed radiotherapy misc targeted therapy misc concurrent misc tyrosine kinase inhibitors misc BRAF inhibitors misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_browse |
misc RC254-282 misc stereotactic misc metastasis-directed radiotherapy misc targeted therapy misc concurrent misc tyrosine kinase inhibitors misc BRAF inhibitors misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cancers |
hierarchy_parent_id |
614095670 |
hierarchy_top_title |
Cancers |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)614095670 (DE-600)2527080-1 |
title |
Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis |
ctrlnum |
(DE-627)DOAJ00464834X (DE-599)DOAJ3ac93b05d41045e48ae198da684d9637 |
title_full |
Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis |
author_sort |
Stephanie G. C. Kroeze |
journal |
Cancers |
journalStr |
Cancers |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Stephanie G. C. Kroeze Corinna Fritz Jana Schaule Oliver Blanck Klaus Henning Kahl David Kaul Shankar Siva Sabine Gerum An Claes Nora Sundahl Sonja Adebahr Susanne Stera Markus M. Schymalla Nasrin Abbasi-Senger Daniel Buergy Michael Geier Marcella Szuecs Fabian Lohaus Guido Henke Stephanie E. Combs Matthias Guckenberger |
container_volume |
13 |
class |
RC254-282 |
format_se |
Elektronische Aufsätze |
author-letter |
Stephanie G. C. Kroeze |
doi_str_mv |
10.3390/cancers13194780 |
author2-role |
verfasserin |
title_sort |
continued versus interrupted targeted therapy during metastasis-directed stereotactic radiotherapy: a retrospective multi-center safety and efficacy analysis |
callnumber |
RC254-282 |
title_auth |
Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis |
abstract |
The increasing use of targeted therapy (TT) has resulted in prolonged disease control and survival in many metastatic cancers. In parallel, stereotactic radiotherapy (SRT) is increasingly performed in patients receiving TT to obtain a durable control of resistant metastases, and thereby to prolong the time to disseminated disease progression and switch of systemic therapy. The aims of this study were to analyze the safety and efficacy of SRT combined with TT in metastatic cancer patients and to assess the influence of continuous vs. interrupted TT during metastasis-directed SRT. The data of 454 SRTs in 158 patients from the international multicenter database (TOaSTT) on metastatic cancer patients treated with SRT and concurrent TT (within 30 days) were analyzed using Kaplan–Meier and log rank testing. Toxicity was defined by the CTCAE v4.03 criteria. The median FU was 19.9 mo (range 1–102 mo); 1y OS, PFS and LC were 59%, 24% and 84%, respectively. Median TTS was 25.5 mo (95% CI 11–40). TT was started before SRT in 77% of patients. TT was interrupted during SRT in 44% of patients, with a median interruption of 7 (range 1–42) days. There was no significant difference in OS or PFS whether TT was temporarily interrupted during SRT or not. Any-grade acute and late SRT-related toxicity occurred in 63 (40%) and 52 (33%) patients, respectively. The highest toxicity rates were observed for the combination of SRT and EGFRi or BRAF/MEKi, and any-grade toxicity was significantly increased when EGFRi (<i<p</i< = 0.016) or BRAF/MEKi (<i<p</i< = 0.009) were continued during SRT. Severe (≥grade 3) acute and late SRT-related toxicity were observed in 5 (3%) and 7 (4%) patients, respectively, most frequently in patients treated with EGFRi or BRAF/MEKi and in the intracranial cohort. There was no significant difference in severe toxicity whether TT was interrupted before and after SRT or not. In conclusion, SRT and continuous vs. interrupted TT in metastatic cancer patients did not influence OS or PFS. Overall, severe toxicity of combined treatment was rare; a potentially increased toxicity after SRT and continuous treatment with EGFR inhibitors or BRAF(±MEK) inhibitors requires further evaluation. |
abstractGer |
The increasing use of targeted therapy (TT) has resulted in prolonged disease control and survival in many metastatic cancers. In parallel, stereotactic radiotherapy (SRT) is increasingly performed in patients receiving TT to obtain a durable control of resistant metastases, and thereby to prolong the time to disseminated disease progression and switch of systemic therapy. The aims of this study were to analyze the safety and efficacy of SRT combined with TT in metastatic cancer patients and to assess the influence of continuous vs. interrupted TT during metastasis-directed SRT. The data of 454 SRTs in 158 patients from the international multicenter database (TOaSTT) on metastatic cancer patients treated with SRT and concurrent TT (within 30 days) were analyzed using Kaplan–Meier and log rank testing. Toxicity was defined by the CTCAE v4.03 criteria. The median FU was 19.9 mo (range 1–102 mo); 1y OS, PFS and LC were 59%, 24% and 84%, respectively. Median TTS was 25.5 mo (95% CI 11–40). TT was started before SRT in 77% of patients. TT was interrupted during SRT in 44% of patients, with a median interruption of 7 (range 1–42) days. There was no significant difference in OS or PFS whether TT was temporarily interrupted during SRT or not. Any-grade acute and late SRT-related toxicity occurred in 63 (40%) and 52 (33%) patients, respectively. The highest toxicity rates were observed for the combination of SRT and EGFRi or BRAF/MEKi, and any-grade toxicity was significantly increased when EGFRi (<i<p</i< = 0.016) or BRAF/MEKi (<i<p</i< = 0.009) were continued during SRT. Severe (≥grade 3) acute and late SRT-related toxicity were observed in 5 (3%) and 7 (4%) patients, respectively, most frequently in patients treated with EGFRi or BRAF/MEKi and in the intracranial cohort. There was no significant difference in severe toxicity whether TT was interrupted before and after SRT or not. In conclusion, SRT and continuous vs. interrupted TT in metastatic cancer patients did not influence OS or PFS. Overall, severe toxicity of combined treatment was rare; a potentially increased toxicity after SRT and continuous treatment with EGFR inhibitors or BRAF(±MEK) inhibitors requires further evaluation. |
abstract_unstemmed |
The increasing use of targeted therapy (TT) has resulted in prolonged disease control and survival in many metastatic cancers. In parallel, stereotactic radiotherapy (SRT) is increasingly performed in patients receiving TT to obtain a durable control of resistant metastases, and thereby to prolong the time to disseminated disease progression and switch of systemic therapy. The aims of this study were to analyze the safety and efficacy of SRT combined with TT in metastatic cancer patients and to assess the influence of continuous vs. interrupted TT during metastasis-directed SRT. The data of 454 SRTs in 158 patients from the international multicenter database (TOaSTT) on metastatic cancer patients treated with SRT and concurrent TT (within 30 days) were analyzed using Kaplan–Meier and log rank testing. Toxicity was defined by the CTCAE v4.03 criteria. The median FU was 19.9 mo (range 1–102 mo); 1y OS, PFS and LC were 59%, 24% and 84%, respectively. Median TTS was 25.5 mo (95% CI 11–40). TT was started before SRT in 77% of patients. TT was interrupted during SRT in 44% of patients, with a median interruption of 7 (range 1–42) days. There was no significant difference in OS or PFS whether TT was temporarily interrupted during SRT or not. Any-grade acute and late SRT-related toxicity occurred in 63 (40%) and 52 (33%) patients, respectively. The highest toxicity rates were observed for the combination of SRT and EGFRi or BRAF/MEKi, and any-grade toxicity was significantly increased when EGFRi (<i<p</i< = 0.016) or BRAF/MEKi (<i<p</i< = 0.009) were continued during SRT. Severe (≥grade 3) acute and late SRT-related toxicity were observed in 5 (3%) and 7 (4%) patients, respectively, most frequently in patients treated with EGFRi or BRAF/MEKi and in the intracranial cohort. There was no significant difference in severe toxicity whether TT was interrupted before and after SRT or not. In conclusion, SRT and continuous vs. interrupted TT in metastatic cancer patients did not influence OS or PFS. Overall, severe toxicity of combined treatment was rare; a potentially increased toxicity after SRT and continuous treatment with EGFR inhibitors or BRAF(±MEK) inhibitors requires further evaluation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
19, p 4780 |
title_short |
Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis |
url |
https://doi.org/10.3390/cancers13194780 https://doaj.org/article/3ac93b05d41045e48ae198da684d9637 https://www.mdpi.com/2072-6694/13/19/4780 https://doaj.org/toc/2072-6694 |
remote_bool |
true |
author2 |
Corinna Fritz Jana Schaule Oliver Blanck Klaus Henning Kahl David Kaul Shankar Siva Sabine Gerum An Claes Nora Sundahl Sonja Adebahr Susanne Stera Markus M. Schymalla Nasrin Abbasi-Senger Daniel Buergy Michael Geier Marcella Szuecs Fabian Lohaus Guido Henke Stephanie E. Combs Matthias Guckenberger |
author2Str |
Corinna Fritz Jana Schaule Oliver Blanck Klaus Henning Kahl David Kaul Shankar Siva Sabine Gerum An Claes Nora Sundahl Sonja Adebahr Susanne Stera Markus M. Schymalla Nasrin Abbasi-Senger Daniel Buergy Michael Geier Marcella Szuecs Fabian Lohaus Guido Henke Stephanie E. Combs Matthias Guckenberger |
ppnlink |
614095670 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/cancers13194780 |
callnumber-a |
RC254-282 |
up_date |
2024-07-04T00:34:53.747Z |
_version_ |
1803606602545102848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ00464834X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412141050.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cancers13194780</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ00464834X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3ac93b05d41045e48ae198da684d9637</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Stephanie G. C. Kroeze</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continued versus Interrupted Targeted Therapy during Metastasis-Directed Stereotactic Radiotherapy: A Retrospective Multi-Center Safety and Efficacy Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The increasing use of targeted therapy (TT) has resulted in prolonged disease control and survival in many metastatic cancers. In parallel, stereotactic radiotherapy (SRT) is increasingly performed in patients receiving TT to obtain a durable control of resistant metastases, and thereby to prolong the time to disseminated disease progression and switch of systemic therapy. The aims of this study were to analyze the safety and efficacy of SRT combined with TT in metastatic cancer patients and to assess the influence of continuous vs. interrupted TT during metastasis-directed SRT. The data of 454 SRTs in 158 patients from the international multicenter database (TOaSTT) on metastatic cancer patients treated with SRT and concurrent TT (within 30 days) were analyzed using Kaplan–Meier and log rank testing. Toxicity was defined by the CTCAE v4.03 criteria. The median FU was 19.9 mo (range 1–102 mo); 1y OS, PFS and LC were 59%, 24% and 84%, respectively. Median TTS was 25.5 mo (95% CI 11–40). TT was started before SRT in 77% of patients. TT was interrupted during SRT in 44% of patients, with a median interruption of 7 (range 1–42) days. There was no significant difference in OS or PFS whether TT was temporarily interrupted during SRT or not. Any-grade acute and late SRT-related toxicity occurred in 63 (40%) and 52 (33%) patients, respectively. The highest toxicity rates were observed for the combination of SRT and EGFRi or BRAF/MEKi, and any-grade toxicity was significantly increased when EGFRi (<i<p</i< = 0.016) or BRAF/MEKi (<i<p</i< = 0.009) were continued during SRT. Severe (≥grade 3) acute and late SRT-related toxicity were observed in 5 (3%) and 7 (4%) patients, respectively, most frequently in patients treated with EGFRi or BRAF/MEKi and in the intracranial cohort. There was no significant difference in severe toxicity whether TT was interrupted before and after SRT or not. In conclusion, SRT and continuous vs. interrupted TT in metastatic cancer patients did not influence OS or PFS. Overall, severe toxicity of combined treatment was rare; a potentially increased toxicity after SRT and continuous treatment with EGFR inhibitors or BRAF(±MEK) inhibitors requires further evaluation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stereotactic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metastasis-directed radiotherapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">targeted therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">concurrent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tyrosine kinase inhibitors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BRAF inhibitors</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Corinna Fritz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jana Schaule</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oliver Blanck</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Klaus Henning Kahl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Kaul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shankar Siva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sabine Gerum</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">An Claes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nora Sundahl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sonja Adebahr</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Susanne Stera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Markus M. Schymalla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nasrin Abbasi-Senger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel Buergy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael Geier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcella Szuecs</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fabian Lohaus</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guido Henke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephanie E. Combs</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matthias Guckenberger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cancers</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2021), 19, p 4780</subfield><subfield code="w">(DE-627)614095670</subfield><subfield code="w">(DE-600)2527080-1</subfield><subfield code="x">20726694</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:19, p 4780</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cancers13194780</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3ac93b05d41045e48ae198da684d9637</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-6694/13/19/4780</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-6694</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">19, p 4780</subfield></datafield></record></collection>
|
score |
7.400977 |