32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence
In this paper, cascaded least mean square-least mean square (LMS-LMS) adaptive equalization scheme is proposed based on fiber coupling system, in order to improve the transmission performance of quadrature phase shift keying (QPSK) modulated optical signals in medium and weak turbulence channels. Fi...
Ausführliche Beschreibung
Autor*in: |
Binyu Li [verfasserIn] Haifeng Yao [verfasserIn] Lei Zhang [verfasserIn] Shoufeng Tong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Free space optical communication |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 9(2021), Seite 130751-130757 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; pages:130751-130757 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2021.3113336 |
---|
Katalog-ID: |
DOAJ004750543 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ004750543 | ||
003 | DE-627 | ||
005 | 20230309184756.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2021.3113336 |2 doi | |
035 | |a (DE-627)DOAJ004750543 | ||
035 | |a (DE-599)DOAJeda311a6160243b9bd0f59c2e934a711 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Binyu Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a 32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, cascaded least mean square-least mean square (LMS-LMS) adaptive equalization scheme is proposed based on fiber coupling system, in order to improve the transmission performance of quadrature phase shift keying (QPSK) modulated optical signals in medium and weak turbulence channels. First, the transmission performance of QPSK optical signal in different atmospheric turbulence channels is simulated and analyzed according to the characteristics of optical fiber coupling system and the characteristics of atmospheric turbulence channel. Secondly, cascaded LMS-LMS equalization scheme is proposed, and its distortion signal is corrected based on the original simulation results to verify the effectiveness and robustness of LMS-LMS. Finally, atmospheric turbulence simulator is used to verify the improvement effect of cascaded LMS-LMS adaptive equalizer under different turbulence conditions. The experimental results show that when the coherence length is <inline-formula< <tex-math notation="LaTeX"<$r_{0} =1.6 $ </tex-math<</inline-formula< cm and the received optical power is −34 dBm, the system can transfer the information at a rate of 32 Gbps QPSK after using cascaded LMS-LMS adaptive equalizer, and the bit-error ratio (BER) is lower than the minimum limit of forward error correction (FEC, <inline-formula< <tex-math notation="LaTeX"<$3.8 \times 10 ^{-3}$ </tex-math<</inline-formula<). This paper can provide theoretical guidance for the performance optimization of free space QPSK optical signal transmission system. | ||
650 | 4 | |a Free space optical communication | |
650 | 4 | |a quadrature phase shift keying | |
650 | 4 | |a atmospheric turbulence simulator | |
650 | 4 | |a cascaded LMS-LMS adaptive equalizer | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Haifeng Yao |e verfasserin |4 aut | |
700 | 0 | |a Lei Zhang |e verfasserin |4 aut | |
700 | 0 | |a Shoufeng Tong |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 9(2021), Seite 130751-130757 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g pages:130751-130757 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2021.3113336 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/eda311a6160243b9bd0f59c2e934a711 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9540655/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |h 130751-130757 |
author_variant |
b l bl h y hy l z lz s t st |
---|---|
matchkey_str |
article:21693536:2021----::2bspkpiacmuiainehooyaeoaeeulzr |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.1109/ACCESS.2021.3113336 doi (DE-627)DOAJ004750543 (DE-599)DOAJeda311a6160243b9bd0f59c2e934a711 DE-627 ger DE-627 rakwb eng TK1-9971 Binyu Li verfasserin aut 32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, cascaded least mean square-least mean square (LMS-LMS) adaptive equalization scheme is proposed based on fiber coupling system, in order to improve the transmission performance of quadrature phase shift keying (QPSK) modulated optical signals in medium and weak turbulence channels. First, the transmission performance of QPSK optical signal in different atmospheric turbulence channels is simulated and analyzed according to the characteristics of optical fiber coupling system and the characteristics of atmospheric turbulence channel. Secondly, cascaded LMS-LMS equalization scheme is proposed, and its distortion signal is corrected based on the original simulation results to verify the effectiveness and robustness of LMS-LMS. Finally, atmospheric turbulence simulator is used to verify the improvement effect of cascaded LMS-LMS adaptive equalizer under different turbulence conditions. The experimental results show that when the coherence length is <inline-formula< <tex-math notation="LaTeX"<$r_{0} =1.6 $ </tex-math<</inline-formula< cm and the received optical power is −34 dBm, the system can transfer the information at a rate of 32 Gbps QPSK after using cascaded LMS-LMS adaptive equalizer, and the bit-error ratio (BER) is lower than the minimum limit of forward error correction (FEC, <inline-formula< <tex-math notation="LaTeX"<$3.8 \times 10 ^{-3}$ </tex-math<</inline-formula<). This paper can provide theoretical guidance for the performance optimization of free space QPSK optical signal transmission system. Free space optical communication quadrature phase shift keying atmospheric turbulence simulator cascaded LMS-LMS adaptive equalizer Electrical engineering. Electronics. Nuclear engineering Haifeng Yao verfasserin aut Lei Zhang verfasserin aut Shoufeng Tong verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 130751-130757 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:130751-130757 https://doi.org/10.1109/ACCESS.2021.3113336 kostenfrei https://doaj.org/article/eda311a6160243b9bd0f59c2e934a711 kostenfrei https://ieeexplore.ieee.org/document/9540655/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 130751-130757 |
spelling |
10.1109/ACCESS.2021.3113336 doi (DE-627)DOAJ004750543 (DE-599)DOAJeda311a6160243b9bd0f59c2e934a711 DE-627 ger DE-627 rakwb eng TK1-9971 Binyu Li verfasserin aut 32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, cascaded least mean square-least mean square (LMS-LMS) adaptive equalization scheme is proposed based on fiber coupling system, in order to improve the transmission performance of quadrature phase shift keying (QPSK) modulated optical signals in medium and weak turbulence channels. First, the transmission performance of QPSK optical signal in different atmospheric turbulence channels is simulated and analyzed according to the characteristics of optical fiber coupling system and the characteristics of atmospheric turbulence channel. Secondly, cascaded LMS-LMS equalization scheme is proposed, and its distortion signal is corrected based on the original simulation results to verify the effectiveness and robustness of LMS-LMS. Finally, atmospheric turbulence simulator is used to verify the improvement effect of cascaded LMS-LMS adaptive equalizer under different turbulence conditions. The experimental results show that when the coherence length is <inline-formula< <tex-math notation="LaTeX"<$r_{0} =1.6 $ </tex-math<</inline-formula< cm and the received optical power is −34 dBm, the system can transfer the information at a rate of 32 Gbps QPSK after using cascaded LMS-LMS adaptive equalizer, and the bit-error ratio (BER) is lower than the minimum limit of forward error correction (FEC, <inline-formula< <tex-math notation="LaTeX"<$3.8 \times 10 ^{-3}$ </tex-math<</inline-formula<). This paper can provide theoretical guidance for the performance optimization of free space QPSK optical signal transmission system. Free space optical communication quadrature phase shift keying atmospheric turbulence simulator cascaded LMS-LMS adaptive equalizer Electrical engineering. Electronics. Nuclear engineering Haifeng Yao verfasserin aut Lei Zhang verfasserin aut Shoufeng Tong verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 130751-130757 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:130751-130757 https://doi.org/10.1109/ACCESS.2021.3113336 kostenfrei https://doaj.org/article/eda311a6160243b9bd0f59c2e934a711 kostenfrei https://ieeexplore.ieee.org/document/9540655/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 130751-130757 |
allfields_unstemmed |
10.1109/ACCESS.2021.3113336 doi (DE-627)DOAJ004750543 (DE-599)DOAJeda311a6160243b9bd0f59c2e934a711 DE-627 ger DE-627 rakwb eng TK1-9971 Binyu Li verfasserin aut 32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, cascaded least mean square-least mean square (LMS-LMS) adaptive equalization scheme is proposed based on fiber coupling system, in order to improve the transmission performance of quadrature phase shift keying (QPSK) modulated optical signals in medium and weak turbulence channels. First, the transmission performance of QPSK optical signal in different atmospheric turbulence channels is simulated and analyzed according to the characteristics of optical fiber coupling system and the characteristics of atmospheric turbulence channel. Secondly, cascaded LMS-LMS equalization scheme is proposed, and its distortion signal is corrected based on the original simulation results to verify the effectiveness and robustness of LMS-LMS. Finally, atmospheric turbulence simulator is used to verify the improvement effect of cascaded LMS-LMS adaptive equalizer under different turbulence conditions. The experimental results show that when the coherence length is <inline-formula< <tex-math notation="LaTeX"<$r_{0} =1.6 $ </tex-math<</inline-formula< cm and the received optical power is −34 dBm, the system can transfer the information at a rate of 32 Gbps QPSK after using cascaded LMS-LMS adaptive equalizer, and the bit-error ratio (BER) is lower than the minimum limit of forward error correction (FEC, <inline-formula< <tex-math notation="LaTeX"<$3.8 \times 10 ^{-3}$ </tex-math<</inline-formula<). This paper can provide theoretical guidance for the performance optimization of free space QPSK optical signal transmission system. Free space optical communication quadrature phase shift keying atmospheric turbulence simulator cascaded LMS-LMS adaptive equalizer Electrical engineering. Electronics. Nuclear engineering Haifeng Yao verfasserin aut Lei Zhang verfasserin aut Shoufeng Tong verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 130751-130757 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:130751-130757 https://doi.org/10.1109/ACCESS.2021.3113336 kostenfrei https://doaj.org/article/eda311a6160243b9bd0f59c2e934a711 kostenfrei https://ieeexplore.ieee.org/document/9540655/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 130751-130757 |
allfieldsGer |
10.1109/ACCESS.2021.3113336 doi (DE-627)DOAJ004750543 (DE-599)DOAJeda311a6160243b9bd0f59c2e934a711 DE-627 ger DE-627 rakwb eng TK1-9971 Binyu Li verfasserin aut 32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, cascaded least mean square-least mean square (LMS-LMS) adaptive equalization scheme is proposed based on fiber coupling system, in order to improve the transmission performance of quadrature phase shift keying (QPSK) modulated optical signals in medium and weak turbulence channels. First, the transmission performance of QPSK optical signal in different atmospheric turbulence channels is simulated and analyzed according to the characteristics of optical fiber coupling system and the characteristics of atmospheric turbulence channel. Secondly, cascaded LMS-LMS equalization scheme is proposed, and its distortion signal is corrected based on the original simulation results to verify the effectiveness and robustness of LMS-LMS. Finally, atmospheric turbulence simulator is used to verify the improvement effect of cascaded LMS-LMS adaptive equalizer under different turbulence conditions. The experimental results show that when the coherence length is <inline-formula< <tex-math notation="LaTeX"<$r_{0} =1.6 $ </tex-math<</inline-formula< cm and the received optical power is −34 dBm, the system can transfer the information at a rate of 32 Gbps QPSK after using cascaded LMS-LMS adaptive equalizer, and the bit-error ratio (BER) is lower than the minimum limit of forward error correction (FEC, <inline-formula< <tex-math notation="LaTeX"<$3.8 \times 10 ^{-3}$ </tex-math<</inline-formula<). This paper can provide theoretical guidance for the performance optimization of free space QPSK optical signal transmission system. Free space optical communication quadrature phase shift keying atmospheric turbulence simulator cascaded LMS-LMS adaptive equalizer Electrical engineering. Electronics. Nuclear engineering Haifeng Yao verfasserin aut Lei Zhang verfasserin aut Shoufeng Tong verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 130751-130757 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:130751-130757 https://doi.org/10.1109/ACCESS.2021.3113336 kostenfrei https://doaj.org/article/eda311a6160243b9bd0f59c2e934a711 kostenfrei https://ieeexplore.ieee.org/document/9540655/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 130751-130757 |
allfieldsSound |
10.1109/ACCESS.2021.3113336 doi (DE-627)DOAJ004750543 (DE-599)DOAJeda311a6160243b9bd0f59c2e934a711 DE-627 ger DE-627 rakwb eng TK1-9971 Binyu Li verfasserin aut 32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, cascaded least mean square-least mean square (LMS-LMS) adaptive equalization scheme is proposed based on fiber coupling system, in order to improve the transmission performance of quadrature phase shift keying (QPSK) modulated optical signals in medium and weak turbulence channels. First, the transmission performance of QPSK optical signal in different atmospheric turbulence channels is simulated and analyzed according to the characteristics of optical fiber coupling system and the characteristics of atmospheric turbulence channel. Secondly, cascaded LMS-LMS equalization scheme is proposed, and its distortion signal is corrected based on the original simulation results to verify the effectiveness and robustness of LMS-LMS. Finally, atmospheric turbulence simulator is used to verify the improvement effect of cascaded LMS-LMS adaptive equalizer under different turbulence conditions. The experimental results show that when the coherence length is <inline-formula< <tex-math notation="LaTeX"<$r_{0} =1.6 $ </tex-math<</inline-formula< cm and the received optical power is −34 dBm, the system can transfer the information at a rate of 32 Gbps QPSK after using cascaded LMS-LMS adaptive equalizer, and the bit-error ratio (BER) is lower than the minimum limit of forward error correction (FEC, <inline-formula< <tex-math notation="LaTeX"<$3.8 \times 10 ^{-3}$ </tex-math<</inline-formula<). This paper can provide theoretical guidance for the performance optimization of free space QPSK optical signal transmission system. Free space optical communication quadrature phase shift keying atmospheric turbulence simulator cascaded LMS-LMS adaptive equalizer Electrical engineering. Electronics. Nuclear engineering Haifeng Yao verfasserin aut Lei Zhang verfasserin aut Shoufeng Tong verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 130751-130757 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:130751-130757 https://doi.org/10.1109/ACCESS.2021.3113336 kostenfrei https://doaj.org/article/eda311a6160243b9bd0f59c2e934a711 kostenfrei https://ieeexplore.ieee.org/document/9540655/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 130751-130757 |
language |
English |
source |
In IEEE Access 9(2021), Seite 130751-130757 volume:9 year:2021 pages:130751-130757 |
sourceStr |
In IEEE Access 9(2021), Seite 130751-130757 volume:9 year:2021 pages:130751-130757 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Free space optical communication quadrature phase shift keying atmospheric turbulence simulator cascaded LMS-LMS adaptive equalizer Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Binyu Li @@aut@@ Haifeng Yao @@aut@@ Lei Zhang @@aut@@ Shoufeng Tong @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ004750543 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ004750543</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309184756.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3113336</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ004750543</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJeda311a6160243b9bd0f59c2e934a711</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Binyu Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, cascaded least mean square-least mean square (LMS-LMS) adaptive equalization scheme is proposed based on fiber coupling system, in order to improve the transmission performance of quadrature phase shift keying (QPSK) modulated optical signals in medium and weak turbulence channels. First, the transmission performance of QPSK optical signal in different atmospheric turbulence channels is simulated and analyzed according to the characteristics of optical fiber coupling system and the characteristics of atmospheric turbulence channel. Secondly, cascaded LMS-LMS equalization scheme is proposed, and its distortion signal is corrected based on the original simulation results to verify the effectiveness and robustness of LMS-LMS. Finally, atmospheric turbulence simulator is used to verify the improvement effect of cascaded LMS-LMS adaptive equalizer under different turbulence conditions. The experimental results show that when the coherence length is <inline-formula< <tex-math notation="LaTeX"<$r_{0} =1.6 $ </tex-math<</inline-formula< cm and the received optical power is −34 dBm, the system can transfer the information at a rate of 32 Gbps QPSK after using cascaded LMS-LMS adaptive equalizer, and the bit-error ratio (BER) is lower than the minimum limit of forward error correction (FEC, <inline-formula< <tex-math notation="LaTeX"<$3.8 \times 10 ^{-3}$ </tex-math<</inline-formula<). This paper can provide theoretical guidance for the performance optimization of free space QPSK optical signal transmission system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free space optical communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quadrature phase shift keying</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atmospheric turbulence simulator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cascaded LMS-LMS adaptive equalizer</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haifeng Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shoufeng Tong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 130751-130757</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:130751-130757</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3113336</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/eda311a6160243b9bd0f59c2e934a711</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9540655/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">130751-130757</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Binyu Li |
spellingShingle |
Binyu Li misc TK1-9971 misc Free space optical communication misc quadrature phase shift keying misc atmospheric turbulence simulator misc cascaded LMS-LMS adaptive equalizer misc Electrical engineering. Electronics. Nuclear engineering 32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence |
authorStr |
Binyu Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence Free space optical communication quadrature phase shift keying atmospheric turbulence simulator cascaded LMS-LMS adaptive equalizer |
topic |
misc TK1-9971 misc Free space optical communication misc quadrature phase shift keying misc atmospheric turbulence simulator misc cascaded LMS-LMS adaptive equalizer misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Free space optical communication misc quadrature phase shift keying misc atmospheric turbulence simulator misc cascaded LMS-LMS adaptive equalizer misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Free space optical communication misc quadrature phase shift keying misc atmospheric turbulence simulator misc cascaded LMS-LMS adaptive equalizer misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence |
ctrlnum |
(DE-627)DOAJ004750543 (DE-599)DOAJeda311a6160243b9bd0f59c2e934a711 |
title_full |
32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence |
author_sort |
Binyu Li |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
130751 |
author_browse |
Binyu Li Haifeng Yao Lei Zhang Shoufeng Tong |
container_volume |
9 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Binyu Li |
doi_str_mv |
10.1109/ACCESS.2021.3113336 |
author2-role |
verfasserin |
title_sort |
32 gbps qpsk optical communication technology based on a new equalizer in atmospheric turbulence |
callnumber |
TK1-9971 |
title_auth |
32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence |
abstract |
In this paper, cascaded least mean square-least mean square (LMS-LMS) adaptive equalization scheme is proposed based on fiber coupling system, in order to improve the transmission performance of quadrature phase shift keying (QPSK) modulated optical signals in medium and weak turbulence channels. First, the transmission performance of QPSK optical signal in different atmospheric turbulence channels is simulated and analyzed according to the characteristics of optical fiber coupling system and the characteristics of atmospheric turbulence channel. Secondly, cascaded LMS-LMS equalization scheme is proposed, and its distortion signal is corrected based on the original simulation results to verify the effectiveness and robustness of LMS-LMS. Finally, atmospheric turbulence simulator is used to verify the improvement effect of cascaded LMS-LMS adaptive equalizer under different turbulence conditions. The experimental results show that when the coherence length is <inline-formula< <tex-math notation="LaTeX"<$r_{0} =1.6 $ </tex-math<</inline-formula< cm and the received optical power is −34 dBm, the system can transfer the information at a rate of 32 Gbps QPSK after using cascaded LMS-LMS adaptive equalizer, and the bit-error ratio (BER) is lower than the minimum limit of forward error correction (FEC, <inline-formula< <tex-math notation="LaTeX"<$3.8 \times 10 ^{-3}$ </tex-math<</inline-formula<). This paper can provide theoretical guidance for the performance optimization of free space QPSK optical signal transmission system. |
abstractGer |
In this paper, cascaded least mean square-least mean square (LMS-LMS) adaptive equalization scheme is proposed based on fiber coupling system, in order to improve the transmission performance of quadrature phase shift keying (QPSK) modulated optical signals in medium and weak turbulence channels. First, the transmission performance of QPSK optical signal in different atmospheric turbulence channels is simulated and analyzed according to the characteristics of optical fiber coupling system and the characteristics of atmospheric turbulence channel. Secondly, cascaded LMS-LMS equalization scheme is proposed, and its distortion signal is corrected based on the original simulation results to verify the effectiveness and robustness of LMS-LMS. Finally, atmospheric turbulence simulator is used to verify the improvement effect of cascaded LMS-LMS adaptive equalizer under different turbulence conditions. The experimental results show that when the coherence length is <inline-formula< <tex-math notation="LaTeX"<$r_{0} =1.6 $ </tex-math<</inline-formula< cm and the received optical power is −34 dBm, the system can transfer the information at a rate of 32 Gbps QPSK after using cascaded LMS-LMS adaptive equalizer, and the bit-error ratio (BER) is lower than the minimum limit of forward error correction (FEC, <inline-formula< <tex-math notation="LaTeX"<$3.8 \times 10 ^{-3}$ </tex-math<</inline-formula<). This paper can provide theoretical guidance for the performance optimization of free space QPSK optical signal transmission system. |
abstract_unstemmed |
In this paper, cascaded least mean square-least mean square (LMS-LMS) adaptive equalization scheme is proposed based on fiber coupling system, in order to improve the transmission performance of quadrature phase shift keying (QPSK) modulated optical signals in medium and weak turbulence channels. First, the transmission performance of QPSK optical signal in different atmospheric turbulence channels is simulated and analyzed according to the characteristics of optical fiber coupling system and the characteristics of atmospheric turbulence channel. Secondly, cascaded LMS-LMS equalization scheme is proposed, and its distortion signal is corrected based on the original simulation results to verify the effectiveness and robustness of LMS-LMS. Finally, atmospheric turbulence simulator is used to verify the improvement effect of cascaded LMS-LMS adaptive equalizer under different turbulence conditions. The experimental results show that when the coherence length is <inline-formula< <tex-math notation="LaTeX"<$r_{0} =1.6 $ </tex-math<</inline-formula< cm and the received optical power is −34 dBm, the system can transfer the information at a rate of 32 Gbps QPSK after using cascaded LMS-LMS adaptive equalizer, and the bit-error ratio (BER) is lower than the minimum limit of forward error correction (FEC, <inline-formula< <tex-math notation="LaTeX"<$3.8 \times 10 ^{-3}$ </tex-math<</inline-formula<). This paper can provide theoretical guidance for the performance optimization of free space QPSK optical signal transmission system. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence |
url |
https://doi.org/10.1109/ACCESS.2021.3113336 https://doaj.org/article/eda311a6160243b9bd0f59c2e934a711 https://ieeexplore.ieee.org/document/9540655/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Haifeng Yao Lei Zhang Shoufeng Tong |
author2Str |
Haifeng Yao Lei Zhang Shoufeng Tong |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2021.3113336 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:59:37.146Z |
_version_ |
1803608158002741248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ004750543</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309184756.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3113336</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ004750543</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJeda311a6160243b9bd0f59c2e934a711</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Binyu Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">32 Gbps QPSK Optical Communication Technology Based on a New Equalizer in Atmospheric Turbulence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, cascaded least mean square-least mean square (LMS-LMS) adaptive equalization scheme is proposed based on fiber coupling system, in order to improve the transmission performance of quadrature phase shift keying (QPSK) modulated optical signals in medium and weak turbulence channels. First, the transmission performance of QPSK optical signal in different atmospheric turbulence channels is simulated and analyzed according to the characteristics of optical fiber coupling system and the characteristics of atmospheric turbulence channel. Secondly, cascaded LMS-LMS equalization scheme is proposed, and its distortion signal is corrected based on the original simulation results to verify the effectiveness and robustness of LMS-LMS. Finally, atmospheric turbulence simulator is used to verify the improvement effect of cascaded LMS-LMS adaptive equalizer under different turbulence conditions. The experimental results show that when the coherence length is <inline-formula< <tex-math notation="LaTeX"<$r_{0} =1.6 $ </tex-math<</inline-formula< cm and the received optical power is −34 dBm, the system can transfer the information at a rate of 32 Gbps QPSK after using cascaded LMS-LMS adaptive equalizer, and the bit-error ratio (BER) is lower than the minimum limit of forward error correction (FEC, <inline-formula< <tex-math notation="LaTeX"<$3.8 \times 10 ^{-3}$ </tex-math<</inline-formula<). This paper can provide theoretical guidance for the performance optimization of free space QPSK optical signal transmission system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free space optical communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quadrature phase shift keying</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atmospheric turbulence simulator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cascaded LMS-LMS adaptive equalizer</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haifeng Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shoufeng Tong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 130751-130757</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:130751-130757</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3113336</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/eda311a6160243b9bd0f59c2e934a711</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9540655/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">130751-130757</subfield></datafield></record></collection>
|
score |
7.4026995 |