Robust Community Detection in Graphs
Community detection in network-type data provides a powerful tool in analyzing and understanding real-world systems. In fact, community detection approaches aim to reduce the network’s dimensionality and partition it into a set of disjoint clusters or communities. However, real networks are usually...
Ausführliche Beschreibung
Autor*in: |
Esraa M. Al-Sharoa [verfasserIn] Bara' M. Ababneh [verfasserIn] Mahmood A. Alkhassaweneh [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 9(2021), Seite 118757-118770 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; pages:118757-118770 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2021.3105692 |
---|
Katalog-ID: |
DOAJ004988442 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ004988442 | ||
003 | DE-627 | ||
005 | 20230309190221.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2021.3105692 |2 doi | |
035 | |a (DE-627)DOAJ004988442 | ||
035 | |a (DE-599)DOAJ0c1dbf3145c645b48bf958b107fbab9f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Esraa M. Al-Sharoa |e verfasserin |4 aut | |
245 | 1 | 0 | |a Robust Community Detection in Graphs |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Community detection in network-type data provides a powerful tool in analyzing and understanding real-world systems. In fact, community detection approaches aim to reduce the network’s dimensionality and partition it into a set of disjoint clusters or communities. However, real networks are usually corrupted with noise or outliers which affect the detected community structure quality. In this paper, a new robust community detection algorithm that is capable of recovering a clean or a smoothed version of the corrupted graph and detecting the correct community structure is introduced. The proposed approach combines robust principal component analysis (RPCA) and symmetric nonnegative matrix factorization (SymNMF) in a single optimization problem. The proposed problem is solved under the framework of alternating direction methods of multipliers (ADMM). In particular, the corrupted adjacency matrix is decomposed into a low-rank and sparse components using RPCA and the community structure is detected by applying SymNMF to the extracted low-rank component. Extensive experiments that have been conducted on real and simulated binary and weighted networks show that the proposed approach significantly outperforms existing algorithms in detecting the correct community structure even in grossly corrupted networks. | ||
650 | 4 | |a Community detection | |
650 | 4 | |a graph theory | |
650 | 4 | |a robust principal component analysis | |
650 | 4 | |a symmetric nonnegative matrix factorization | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Bara' M. Ababneh |e verfasserin |4 aut | |
700 | 0 | |a Mahmood A. Alkhassaweneh |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 9(2021), Seite 118757-118770 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g pages:118757-118770 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2021.3105692 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0c1dbf3145c645b48bf958b107fbab9f |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9515978/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |h 118757-118770 |
author_variant |
e m a s emas b m a bma m a a maa |
---|---|
matchkey_str |
article:21693536:2021----::outomntdtcin |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.1109/ACCESS.2021.3105692 doi (DE-627)DOAJ004988442 (DE-599)DOAJ0c1dbf3145c645b48bf958b107fbab9f DE-627 ger DE-627 rakwb eng TK1-9971 Esraa M. Al-Sharoa verfasserin aut Robust Community Detection in Graphs 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Community detection in network-type data provides a powerful tool in analyzing and understanding real-world systems. In fact, community detection approaches aim to reduce the network’s dimensionality and partition it into a set of disjoint clusters or communities. However, real networks are usually corrupted with noise or outliers which affect the detected community structure quality. In this paper, a new robust community detection algorithm that is capable of recovering a clean or a smoothed version of the corrupted graph and detecting the correct community structure is introduced. The proposed approach combines robust principal component analysis (RPCA) and symmetric nonnegative matrix factorization (SymNMF) in a single optimization problem. The proposed problem is solved under the framework of alternating direction methods of multipliers (ADMM). In particular, the corrupted adjacency matrix is decomposed into a low-rank and sparse components using RPCA and the community structure is detected by applying SymNMF to the extracted low-rank component. Extensive experiments that have been conducted on real and simulated binary and weighted networks show that the proposed approach significantly outperforms existing algorithms in detecting the correct community structure even in grossly corrupted networks. Community detection graph theory robust principal component analysis symmetric nonnegative matrix factorization Electrical engineering. Electronics. Nuclear engineering Bara' M. Ababneh verfasserin aut Mahmood A. Alkhassaweneh verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 118757-118770 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:118757-118770 https://doi.org/10.1109/ACCESS.2021.3105692 kostenfrei https://doaj.org/article/0c1dbf3145c645b48bf958b107fbab9f kostenfrei https://ieeexplore.ieee.org/document/9515978/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 118757-118770 |
spelling |
10.1109/ACCESS.2021.3105692 doi (DE-627)DOAJ004988442 (DE-599)DOAJ0c1dbf3145c645b48bf958b107fbab9f DE-627 ger DE-627 rakwb eng TK1-9971 Esraa M. Al-Sharoa verfasserin aut Robust Community Detection in Graphs 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Community detection in network-type data provides a powerful tool in analyzing and understanding real-world systems. In fact, community detection approaches aim to reduce the network’s dimensionality and partition it into a set of disjoint clusters or communities. However, real networks are usually corrupted with noise or outliers which affect the detected community structure quality. In this paper, a new robust community detection algorithm that is capable of recovering a clean or a smoothed version of the corrupted graph and detecting the correct community structure is introduced. The proposed approach combines robust principal component analysis (RPCA) and symmetric nonnegative matrix factorization (SymNMF) in a single optimization problem. The proposed problem is solved under the framework of alternating direction methods of multipliers (ADMM). In particular, the corrupted adjacency matrix is decomposed into a low-rank and sparse components using RPCA and the community structure is detected by applying SymNMF to the extracted low-rank component. Extensive experiments that have been conducted on real and simulated binary and weighted networks show that the proposed approach significantly outperforms existing algorithms in detecting the correct community structure even in grossly corrupted networks. Community detection graph theory robust principal component analysis symmetric nonnegative matrix factorization Electrical engineering. Electronics. Nuclear engineering Bara' M. Ababneh verfasserin aut Mahmood A. Alkhassaweneh verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 118757-118770 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:118757-118770 https://doi.org/10.1109/ACCESS.2021.3105692 kostenfrei https://doaj.org/article/0c1dbf3145c645b48bf958b107fbab9f kostenfrei https://ieeexplore.ieee.org/document/9515978/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 118757-118770 |
allfields_unstemmed |
10.1109/ACCESS.2021.3105692 doi (DE-627)DOAJ004988442 (DE-599)DOAJ0c1dbf3145c645b48bf958b107fbab9f DE-627 ger DE-627 rakwb eng TK1-9971 Esraa M. Al-Sharoa verfasserin aut Robust Community Detection in Graphs 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Community detection in network-type data provides a powerful tool in analyzing and understanding real-world systems. In fact, community detection approaches aim to reduce the network’s dimensionality and partition it into a set of disjoint clusters or communities. However, real networks are usually corrupted with noise or outliers which affect the detected community structure quality. In this paper, a new robust community detection algorithm that is capable of recovering a clean or a smoothed version of the corrupted graph and detecting the correct community structure is introduced. The proposed approach combines robust principal component analysis (RPCA) and symmetric nonnegative matrix factorization (SymNMF) in a single optimization problem. The proposed problem is solved under the framework of alternating direction methods of multipliers (ADMM). In particular, the corrupted adjacency matrix is decomposed into a low-rank and sparse components using RPCA and the community structure is detected by applying SymNMF to the extracted low-rank component. Extensive experiments that have been conducted on real and simulated binary and weighted networks show that the proposed approach significantly outperforms existing algorithms in detecting the correct community structure even in grossly corrupted networks. Community detection graph theory robust principal component analysis symmetric nonnegative matrix factorization Electrical engineering. Electronics. Nuclear engineering Bara' M. Ababneh verfasserin aut Mahmood A. Alkhassaweneh verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 118757-118770 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:118757-118770 https://doi.org/10.1109/ACCESS.2021.3105692 kostenfrei https://doaj.org/article/0c1dbf3145c645b48bf958b107fbab9f kostenfrei https://ieeexplore.ieee.org/document/9515978/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 118757-118770 |
allfieldsGer |
10.1109/ACCESS.2021.3105692 doi (DE-627)DOAJ004988442 (DE-599)DOAJ0c1dbf3145c645b48bf958b107fbab9f DE-627 ger DE-627 rakwb eng TK1-9971 Esraa M. Al-Sharoa verfasserin aut Robust Community Detection in Graphs 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Community detection in network-type data provides a powerful tool in analyzing and understanding real-world systems. In fact, community detection approaches aim to reduce the network’s dimensionality and partition it into a set of disjoint clusters or communities. However, real networks are usually corrupted with noise or outliers which affect the detected community structure quality. In this paper, a new robust community detection algorithm that is capable of recovering a clean or a smoothed version of the corrupted graph and detecting the correct community structure is introduced. The proposed approach combines robust principal component analysis (RPCA) and symmetric nonnegative matrix factorization (SymNMF) in a single optimization problem. The proposed problem is solved under the framework of alternating direction methods of multipliers (ADMM). In particular, the corrupted adjacency matrix is decomposed into a low-rank and sparse components using RPCA and the community structure is detected by applying SymNMF to the extracted low-rank component. Extensive experiments that have been conducted on real and simulated binary and weighted networks show that the proposed approach significantly outperforms existing algorithms in detecting the correct community structure even in grossly corrupted networks. Community detection graph theory robust principal component analysis symmetric nonnegative matrix factorization Electrical engineering. Electronics. Nuclear engineering Bara' M. Ababneh verfasserin aut Mahmood A. Alkhassaweneh verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 118757-118770 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:118757-118770 https://doi.org/10.1109/ACCESS.2021.3105692 kostenfrei https://doaj.org/article/0c1dbf3145c645b48bf958b107fbab9f kostenfrei https://ieeexplore.ieee.org/document/9515978/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 118757-118770 |
allfieldsSound |
10.1109/ACCESS.2021.3105692 doi (DE-627)DOAJ004988442 (DE-599)DOAJ0c1dbf3145c645b48bf958b107fbab9f DE-627 ger DE-627 rakwb eng TK1-9971 Esraa M. Al-Sharoa verfasserin aut Robust Community Detection in Graphs 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Community detection in network-type data provides a powerful tool in analyzing and understanding real-world systems. In fact, community detection approaches aim to reduce the network’s dimensionality and partition it into a set of disjoint clusters or communities. However, real networks are usually corrupted with noise or outliers which affect the detected community structure quality. In this paper, a new robust community detection algorithm that is capable of recovering a clean or a smoothed version of the corrupted graph and detecting the correct community structure is introduced. The proposed approach combines robust principal component analysis (RPCA) and symmetric nonnegative matrix factorization (SymNMF) in a single optimization problem. The proposed problem is solved under the framework of alternating direction methods of multipliers (ADMM). In particular, the corrupted adjacency matrix is decomposed into a low-rank and sparse components using RPCA and the community structure is detected by applying SymNMF to the extracted low-rank component. Extensive experiments that have been conducted on real and simulated binary and weighted networks show that the proposed approach significantly outperforms existing algorithms in detecting the correct community structure even in grossly corrupted networks. Community detection graph theory robust principal component analysis symmetric nonnegative matrix factorization Electrical engineering. Electronics. Nuclear engineering Bara' M. Ababneh verfasserin aut Mahmood A. Alkhassaweneh verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 118757-118770 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:118757-118770 https://doi.org/10.1109/ACCESS.2021.3105692 kostenfrei https://doaj.org/article/0c1dbf3145c645b48bf958b107fbab9f kostenfrei https://ieeexplore.ieee.org/document/9515978/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 118757-118770 |
language |
English |
source |
In IEEE Access 9(2021), Seite 118757-118770 volume:9 year:2021 pages:118757-118770 |
sourceStr |
In IEEE Access 9(2021), Seite 118757-118770 volume:9 year:2021 pages:118757-118770 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Community detection graph theory robust principal component analysis symmetric nonnegative matrix factorization Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Esraa M. Al-Sharoa @@aut@@ Bara' M. Ababneh @@aut@@ Mahmood A. Alkhassaweneh @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ004988442 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ004988442</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309190221.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3105692</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ004988442</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0c1dbf3145c645b48bf958b107fbab9f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Esraa M. Al-Sharoa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust Community Detection in Graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Community detection in network-type data provides a powerful tool in analyzing and understanding real-world systems. In fact, community detection approaches aim to reduce the network’s dimensionality and partition it into a set of disjoint clusters or communities. However, real networks are usually corrupted with noise or outliers which affect the detected community structure quality. In this paper, a new robust community detection algorithm that is capable of recovering a clean or a smoothed version of the corrupted graph and detecting the correct community structure is introduced. The proposed approach combines robust principal component analysis (RPCA) and symmetric nonnegative matrix factorization (SymNMF) in a single optimization problem. The proposed problem is solved under the framework of alternating direction methods of multipliers (ADMM). In particular, the corrupted adjacency matrix is decomposed into a low-rank and sparse components using RPCA and the community structure is detected by applying SymNMF to the extracted low-rank component. Extensive experiments that have been conducted on real and simulated binary and weighted networks show that the proposed approach significantly outperforms existing algorithms in detecting the correct community structure even in grossly corrupted networks.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Community detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robust principal component analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">symmetric nonnegative matrix factorization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bara' M. Ababneh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mahmood A. Alkhassaweneh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 118757-118770</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:118757-118770</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3105692</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0c1dbf3145c645b48bf958b107fbab9f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9515978/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">118757-118770</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Esraa M. Al-Sharoa |
spellingShingle |
Esraa M. Al-Sharoa misc TK1-9971 misc Community detection misc graph theory misc robust principal component analysis misc symmetric nonnegative matrix factorization misc Electrical engineering. Electronics. Nuclear engineering Robust Community Detection in Graphs |
authorStr |
Esraa M. Al-Sharoa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Robust Community Detection in Graphs Community detection graph theory robust principal component analysis symmetric nonnegative matrix factorization |
topic |
misc TK1-9971 misc Community detection misc graph theory misc robust principal component analysis misc symmetric nonnegative matrix factorization misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Community detection misc graph theory misc robust principal component analysis misc symmetric nonnegative matrix factorization misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Community detection misc graph theory misc robust principal component analysis misc symmetric nonnegative matrix factorization misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Robust Community Detection in Graphs |
ctrlnum |
(DE-627)DOAJ004988442 (DE-599)DOAJ0c1dbf3145c645b48bf958b107fbab9f |
title_full |
Robust Community Detection in Graphs |
author_sort |
Esraa M. Al-Sharoa |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
118757 |
author_browse |
Esraa M. Al-Sharoa Bara' M. Ababneh Mahmood A. Alkhassaweneh |
container_volume |
9 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Esraa M. Al-Sharoa |
doi_str_mv |
10.1109/ACCESS.2021.3105692 |
author2-role |
verfasserin |
title_sort |
robust community detection in graphs |
callnumber |
TK1-9971 |
title_auth |
Robust Community Detection in Graphs |
abstract |
Community detection in network-type data provides a powerful tool in analyzing and understanding real-world systems. In fact, community detection approaches aim to reduce the network’s dimensionality and partition it into a set of disjoint clusters or communities. However, real networks are usually corrupted with noise or outliers which affect the detected community structure quality. In this paper, a new robust community detection algorithm that is capable of recovering a clean or a smoothed version of the corrupted graph and detecting the correct community structure is introduced. The proposed approach combines robust principal component analysis (RPCA) and symmetric nonnegative matrix factorization (SymNMF) in a single optimization problem. The proposed problem is solved under the framework of alternating direction methods of multipliers (ADMM). In particular, the corrupted adjacency matrix is decomposed into a low-rank and sparse components using RPCA and the community structure is detected by applying SymNMF to the extracted low-rank component. Extensive experiments that have been conducted on real and simulated binary and weighted networks show that the proposed approach significantly outperforms existing algorithms in detecting the correct community structure even in grossly corrupted networks. |
abstractGer |
Community detection in network-type data provides a powerful tool in analyzing and understanding real-world systems. In fact, community detection approaches aim to reduce the network’s dimensionality and partition it into a set of disjoint clusters or communities. However, real networks are usually corrupted with noise or outliers which affect the detected community structure quality. In this paper, a new robust community detection algorithm that is capable of recovering a clean or a smoothed version of the corrupted graph and detecting the correct community structure is introduced. The proposed approach combines robust principal component analysis (RPCA) and symmetric nonnegative matrix factorization (SymNMF) in a single optimization problem. The proposed problem is solved under the framework of alternating direction methods of multipliers (ADMM). In particular, the corrupted adjacency matrix is decomposed into a low-rank and sparse components using RPCA and the community structure is detected by applying SymNMF to the extracted low-rank component. Extensive experiments that have been conducted on real and simulated binary and weighted networks show that the proposed approach significantly outperforms existing algorithms in detecting the correct community structure even in grossly corrupted networks. |
abstract_unstemmed |
Community detection in network-type data provides a powerful tool in analyzing and understanding real-world systems. In fact, community detection approaches aim to reduce the network’s dimensionality and partition it into a set of disjoint clusters or communities. However, real networks are usually corrupted with noise or outliers which affect the detected community structure quality. In this paper, a new robust community detection algorithm that is capable of recovering a clean or a smoothed version of the corrupted graph and detecting the correct community structure is introduced. The proposed approach combines robust principal component analysis (RPCA) and symmetric nonnegative matrix factorization (SymNMF) in a single optimization problem. The proposed problem is solved under the framework of alternating direction methods of multipliers (ADMM). In particular, the corrupted adjacency matrix is decomposed into a low-rank and sparse components using RPCA and the community structure is detected by applying SymNMF to the extracted low-rank component. Extensive experiments that have been conducted on real and simulated binary and weighted networks show that the proposed approach significantly outperforms existing algorithms in detecting the correct community structure even in grossly corrupted networks. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Robust Community Detection in Graphs |
url |
https://doi.org/10.1109/ACCESS.2021.3105692 https://doaj.org/article/0c1dbf3145c645b48bf958b107fbab9f https://ieeexplore.ieee.org/document/9515978/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Bara' M. Ababneh Mahmood A. Alkhassaweneh |
author2Str |
Bara' M. Ababneh Mahmood A. Alkhassaweneh |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2021.3105692 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T01:55:55.445Z |
_version_ |
1803611700409139200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ004988442</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309190221.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3105692</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ004988442</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0c1dbf3145c645b48bf958b107fbab9f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Esraa M. Al-Sharoa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust Community Detection in Graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Community detection in network-type data provides a powerful tool in analyzing and understanding real-world systems. In fact, community detection approaches aim to reduce the network’s dimensionality and partition it into a set of disjoint clusters or communities. However, real networks are usually corrupted with noise or outliers which affect the detected community structure quality. In this paper, a new robust community detection algorithm that is capable of recovering a clean or a smoothed version of the corrupted graph and detecting the correct community structure is introduced. The proposed approach combines robust principal component analysis (RPCA) and symmetric nonnegative matrix factorization (SymNMF) in a single optimization problem. The proposed problem is solved under the framework of alternating direction methods of multipliers (ADMM). In particular, the corrupted adjacency matrix is decomposed into a low-rank and sparse components using RPCA and the community structure is detected by applying SymNMF to the extracted low-rank component. Extensive experiments that have been conducted on real and simulated binary and weighted networks show that the proposed approach significantly outperforms existing algorithms in detecting the correct community structure even in grossly corrupted networks.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Community detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robust principal component analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">symmetric nonnegative matrix factorization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bara' M. Ababneh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mahmood A. Alkhassaweneh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 118757-118770</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:118757-118770</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3105692</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0c1dbf3145c645b48bf958b107fbab9f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9515978/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">118757-118770</subfield></datafield></record></collection>
|
score |
7.399584 |