QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks
Many computer network applications impose constraints for multiple quality of service (QoS) metrics, e.g., delay, packet loss, bandwidth, and jitter. These QoS constraints cannot be guaranteed by the Internet due to its best-effort service model. Overlay networks have been an effective technique at...
Ausführliche Beschreibung
Autor*in: |
Nitin Varyani [verfasserIn] Zhi-Li Zhang [verfasserIn] David Dai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 104109-104126 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:104109-104126 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.2995558 |
---|
Katalog-ID: |
DOAJ005076366 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ005076366 | ||
003 | DE-627 | ||
005 | 20230309190734.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.2995558 |2 doi | |
035 | |a (DE-627)DOAJ005076366 | ||
035 | |a (DE-599)DOAJ0498154131084c07baceff14c05d4c4d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Nitin Varyani |e verfasserin |4 aut | |
245 | 1 | 0 | |a QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Many computer network applications impose constraints for multiple quality of service (QoS) metrics, e.g., delay, packet loss, bandwidth, and jitter. These QoS constraints cannot be guaranteed by the Internet due to its best-effort service model. Overlay networks have been an effective technique at the application layer to support multiple QoS constraints of networking applications. In software-defined overlay networks, software-defined networking (SDN) paradigm is introduced in the overlay networks to enable centralized and efficient routing of traffic in the overlay networks, thus, enabling better QoS. One of the main challenges in software-defined overlay networks is the fast-changing overlay link QoS characteristics. However, the existing routing algorithms for satisfying multiple QoS constraints in software-defined overlay networks involve high route computation time and thus these routing algorithms cannot adapt to the fast-changing overlay link QoS characteristics. Moreover, as we scale the size of overlay networks, the size of forwarding tables increases exponentially. This is because the existing routing schemes for ensuring multiple QoS constraints use both the source and the destination address for data-plane forwarding. This leads to pushing a huge amount of forwarding table entries by the controller through the network and thus limiting the size of the overlay network. We propose an efficient routing scheme, QROUTE, for satisfying multiple QoS constraints in software-defined overlay networks. QROUTE consists of a control plane routing algorithm which has significantly low route computation time because of employing a novel directed-acyclic-graph (DAG) based approach. QROUTE also reduces the forwarding entries in the data plane by using a QoS-metric-based forwarding scheme. We extensively evaluate QROUTE using traces from a global overlay service provider. We also examine QROUTE on a testbed of P4-BMv2 switches controlled by the ONOS controller using P4Runtime protocol. We find that QROUTE outperforms other state-of-the-art QoS routing schemes in route computation time, size of the forwarding tables and meeting the QoS requirements of various applications. | ||
650 | 4 | |a QoS | |
650 | 4 | |a routing | |
650 | 4 | |a DAG | |
650 | 4 | |a route computation time | |
650 | 4 | |a forwarding table size | |
650 | 4 | |a QoS-metrics-based forwarding | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Zhi-Li Zhang |e verfasserin |4 aut | |
700 | 0 | |a David Dai |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 104109-104126 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:104109-104126 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.2995558 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0498154131084c07baceff14c05d4c4d |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9096304/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 104109-104126 |
author_variant |
n v nv z l z zlz d d dd |
---|---|
matchkey_str |
article:21693536:2020----::ruenfiinqaiyfevcqsotnshmfrotae |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.2995558 doi (DE-627)DOAJ005076366 (DE-599)DOAJ0498154131084c07baceff14c05d4c4d DE-627 ger DE-627 rakwb eng TK1-9971 Nitin Varyani verfasserin aut QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many computer network applications impose constraints for multiple quality of service (QoS) metrics, e.g., delay, packet loss, bandwidth, and jitter. These QoS constraints cannot be guaranteed by the Internet due to its best-effort service model. Overlay networks have been an effective technique at the application layer to support multiple QoS constraints of networking applications. In software-defined overlay networks, software-defined networking (SDN) paradigm is introduced in the overlay networks to enable centralized and efficient routing of traffic in the overlay networks, thus, enabling better QoS. One of the main challenges in software-defined overlay networks is the fast-changing overlay link QoS characteristics. However, the existing routing algorithms for satisfying multiple QoS constraints in software-defined overlay networks involve high route computation time and thus these routing algorithms cannot adapt to the fast-changing overlay link QoS characteristics. Moreover, as we scale the size of overlay networks, the size of forwarding tables increases exponentially. This is because the existing routing schemes for ensuring multiple QoS constraints use both the source and the destination address for data-plane forwarding. This leads to pushing a huge amount of forwarding table entries by the controller through the network and thus limiting the size of the overlay network. We propose an efficient routing scheme, QROUTE, for satisfying multiple QoS constraints in software-defined overlay networks. QROUTE consists of a control plane routing algorithm which has significantly low route computation time because of employing a novel directed-acyclic-graph (DAG) based approach. QROUTE also reduces the forwarding entries in the data plane by using a QoS-metric-based forwarding scheme. We extensively evaluate QROUTE using traces from a global overlay service provider. We also examine QROUTE on a testbed of P4-BMv2 switches controlled by the ONOS controller using P4Runtime protocol. We find that QROUTE outperforms other state-of-the-art QoS routing schemes in route computation time, size of the forwarding tables and meeting the QoS requirements of various applications. QoS routing DAG route computation time forwarding table size QoS-metrics-based forwarding Electrical engineering. Electronics. Nuclear engineering Zhi-Li Zhang verfasserin aut David Dai verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 104109-104126 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:104109-104126 https://doi.org/10.1109/ACCESS.2020.2995558 kostenfrei https://doaj.org/article/0498154131084c07baceff14c05d4c4d kostenfrei https://ieeexplore.ieee.org/document/9096304/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 104109-104126 |
spelling |
10.1109/ACCESS.2020.2995558 doi (DE-627)DOAJ005076366 (DE-599)DOAJ0498154131084c07baceff14c05d4c4d DE-627 ger DE-627 rakwb eng TK1-9971 Nitin Varyani verfasserin aut QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many computer network applications impose constraints for multiple quality of service (QoS) metrics, e.g., delay, packet loss, bandwidth, and jitter. These QoS constraints cannot be guaranteed by the Internet due to its best-effort service model. Overlay networks have been an effective technique at the application layer to support multiple QoS constraints of networking applications. In software-defined overlay networks, software-defined networking (SDN) paradigm is introduced in the overlay networks to enable centralized and efficient routing of traffic in the overlay networks, thus, enabling better QoS. One of the main challenges in software-defined overlay networks is the fast-changing overlay link QoS characteristics. However, the existing routing algorithms for satisfying multiple QoS constraints in software-defined overlay networks involve high route computation time and thus these routing algorithms cannot adapt to the fast-changing overlay link QoS characteristics. Moreover, as we scale the size of overlay networks, the size of forwarding tables increases exponentially. This is because the existing routing schemes for ensuring multiple QoS constraints use both the source and the destination address for data-plane forwarding. This leads to pushing a huge amount of forwarding table entries by the controller through the network and thus limiting the size of the overlay network. We propose an efficient routing scheme, QROUTE, for satisfying multiple QoS constraints in software-defined overlay networks. QROUTE consists of a control plane routing algorithm which has significantly low route computation time because of employing a novel directed-acyclic-graph (DAG) based approach. QROUTE also reduces the forwarding entries in the data plane by using a QoS-metric-based forwarding scheme. We extensively evaluate QROUTE using traces from a global overlay service provider. We also examine QROUTE on a testbed of P4-BMv2 switches controlled by the ONOS controller using P4Runtime protocol. We find that QROUTE outperforms other state-of-the-art QoS routing schemes in route computation time, size of the forwarding tables and meeting the QoS requirements of various applications. QoS routing DAG route computation time forwarding table size QoS-metrics-based forwarding Electrical engineering. Electronics. Nuclear engineering Zhi-Li Zhang verfasserin aut David Dai verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 104109-104126 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:104109-104126 https://doi.org/10.1109/ACCESS.2020.2995558 kostenfrei https://doaj.org/article/0498154131084c07baceff14c05d4c4d kostenfrei https://ieeexplore.ieee.org/document/9096304/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 104109-104126 |
allfields_unstemmed |
10.1109/ACCESS.2020.2995558 doi (DE-627)DOAJ005076366 (DE-599)DOAJ0498154131084c07baceff14c05d4c4d DE-627 ger DE-627 rakwb eng TK1-9971 Nitin Varyani verfasserin aut QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many computer network applications impose constraints for multiple quality of service (QoS) metrics, e.g., delay, packet loss, bandwidth, and jitter. These QoS constraints cannot be guaranteed by the Internet due to its best-effort service model. Overlay networks have been an effective technique at the application layer to support multiple QoS constraints of networking applications. In software-defined overlay networks, software-defined networking (SDN) paradigm is introduced in the overlay networks to enable centralized and efficient routing of traffic in the overlay networks, thus, enabling better QoS. One of the main challenges in software-defined overlay networks is the fast-changing overlay link QoS characteristics. However, the existing routing algorithms for satisfying multiple QoS constraints in software-defined overlay networks involve high route computation time and thus these routing algorithms cannot adapt to the fast-changing overlay link QoS characteristics. Moreover, as we scale the size of overlay networks, the size of forwarding tables increases exponentially. This is because the existing routing schemes for ensuring multiple QoS constraints use both the source and the destination address for data-plane forwarding. This leads to pushing a huge amount of forwarding table entries by the controller through the network and thus limiting the size of the overlay network. We propose an efficient routing scheme, QROUTE, for satisfying multiple QoS constraints in software-defined overlay networks. QROUTE consists of a control plane routing algorithm which has significantly low route computation time because of employing a novel directed-acyclic-graph (DAG) based approach. QROUTE also reduces the forwarding entries in the data plane by using a QoS-metric-based forwarding scheme. We extensively evaluate QROUTE using traces from a global overlay service provider. We also examine QROUTE on a testbed of P4-BMv2 switches controlled by the ONOS controller using P4Runtime protocol. We find that QROUTE outperforms other state-of-the-art QoS routing schemes in route computation time, size of the forwarding tables and meeting the QoS requirements of various applications. QoS routing DAG route computation time forwarding table size QoS-metrics-based forwarding Electrical engineering. Electronics. Nuclear engineering Zhi-Li Zhang verfasserin aut David Dai verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 104109-104126 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:104109-104126 https://doi.org/10.1109/ACCESS.2020.2995558 kostenfrei https://doaj.org/article/0498154131084c07baceff14c05d4c4d kostenfrei https://ieeexplore.ieee.org/document/9096304/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 104109-104126 |
allfieldsGer |
10.1109/ACCESS.2020.2995558 doi (DE-627)DOAJ005076366 (DE-599)DOAJ0498154131084c07baceff14c05d4c4d DE-627 ger DE-627 rakwb eng TK1-9971 Nitin Varyani verfasserin aut QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many computer network applications impose constraints for multiple quality of service (QoS) metrics, e.g., delay, packet loss, bandwidth, and jitter. These QoS constraints cannot be guaranteed by the Internet due to its best-effort service model. Overlay networks have been an effective technique at the application layer to support multiple QoS constraints of networking applications. In software-defined overlay networks, software-defined networking (SDN) paradigm is introduced in the overlay networks to enable centralized and efficient routing of traffic in the overlay networks, thus, enabling better QoS. One of the main challenges in software-defined overlay networks is the fast-changing overlay link QoS characteristics. However, the existing routing algorithms for satisfying multiple QoS constraints in software-defined overlay networks involve high route computation time and thus these routing algorithms cannot adapt to the fast-changing overlay link QoS characteristics. Moreover, as we scale the size of overlay networks, the size of forwarding tables increases exponentially. This is because the existing routing schemes for ensuring multiple QoS constraints use both the source and the destination address for data-plane forwarding. This leads to pushing a huge amount of forwarding table entries by the controller through the network and thus limiting the size of the overlay network. We propose an efficient routing scheme, QROUTE, for satisfying multiple QoS constraints in software-defined overlay networks. QROUTE consists of a control plane routing algorithm which has significantly low route computation time because of employing a novel directed-acyclic-graph (DAG) based approach. QROUTE also reduces the forwarding entries in the data plane by using a QoS-metric-based forwarding scheme. We extensively evaluate QROUTE using traces from a global overlay service provider. We also examine QROUTE on a testbed of P4-BMv2 switches controlled by the ONOS controller using P4Runtime protocol. We find that QROUTE outperforms other state-of-the-art QoS routing schemes in route computation time, size of the forwarding tables and meeting the QoS requirements of various applications. QoS routing DAG route computation time forwarding table size QoS-metrics-based forwarding Electrical engineering. Electronics. Nuclear engineering Zhi-Li Zhang verfasserin aut David Dai verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 104109-104126 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:104109-104126 https://doi.org/10.1109/ACCESS.2020.2995558 kostenfrei https://doaj.org/article/0498154131084c07baceff14c05d4c4d kostenfrei https://ieeexplore.ieee.org/document/9096304/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 104109-104126 |
allfieldsSound |
10.1109/ACCESS.2020.2995558 doi (DE-627)DOAJ005076366 (DE-599)DOAJ0498154131084c07baceff14c05d4c4d DE-627 ger DE-627 rakwb eng TK1-9971 Nitin Varyani verfasserin aut QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many computer network applications impose constraints for multiple quality of service (QoS) metrics, e.g., delay, packet loss, bandwidth, and jitter. These QoS constraints cannot be guaranteed by the Internet due to its best-effort service model. Overlay networks have been an effective technique at the application layer to support multiple QoS constraints of networking applications. In software-defined overlay networks, software-defined networking (SDN) paradigm is introduced in the overlay networks to enable centralized and efficient routing of traffic in the overlay networks, thus, enabling better QoS. One of the main challenges in software-defined overlay networks is the fast-changing overlay link QoS characteristics. However, the existing routing algorithms for satisfying multiple QoS constraints in software-defined overlay networks involve high route computation time and thus these routing algorithms cannot adapt to the fast-changing overlay link QoS characteristics. Moreover, as we scale the size of overlay networks, the size of forwarding tables increases exponentially. This is because the existing routing schemes for ensuring multiple QoS constraints use both the source and the destination address for data-plane forwarding. This leads to pushing a huge amount of forwarding table entries by the controller through the network and thus limiting the size of the overlay network. We propose an efficient routing scheme, QROUTE, for satisfying multiple QoS constraints in software-defined overlay networks. QROUTE consists of a control plane routing algorithm which has significantly low route computation time because of employing a novel directed-acyclic-graph (DAG) based approach. QROUTE also reduces the forwarding entries in the data plane by using a QoS-metric-based forwarding scheme. We extensively evaluate QROUTE using traces from a global overlay service provider. We also examine QROUTE on a testbed of P4-BMv2 switches controlled by the ONOS controller using P4Runtime protocol. We find that QROUTE outperforms other state-of-the-art QoS routing schemes in route computation time, size of the forwarding tables and meeting the QoS requirements of various applications. QoS routing DAG route computation time forwarding table size QoS-metrics-based forwarding Electrical engineering. Electronics. Nuclear engineering Zhi-Li Zhang verfasserin aut David Dai verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 104109-104126 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:104109-104126 https://doi.org/10.1109/ACCESS.2020.2995558 kostenfrei https://doaj.org/article/0498154131084c07baceff14c05d4c4d kostenfrei https://ieeexplore.ieee.org/document/9096304/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 104109-104126 |
language |
English |
source |
In IEEE Access 8(2020), Seite 104109-104126 volume:8 year:2020 pages:104109-104126 |
sourceStr |
In IEEE Access 8(2020), Seite 104109-104126 volume:8 year:2020 pages:104109-104126 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
QoS routing DAG route computation time forwarding table size QoS-metrics-based forwarding Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Nitin Varyani @@aut@@ Zhi-Li Zhang @@aut@@ David Dai @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ005076366 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005076366</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309190734.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2995558</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005076366</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0498154131084c07baceff14c05d4c4d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nitin Varyani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many computer network applications impose constraints for multiple quality of service (QoS) metrics, e.g., delay, packet loss, bandwidth, and jitter. These QoS constraints cannot be guaranteed by the Internet due to its best-effort service model. Overlay networks have been an effective technique at the application layer to support multiple QoS constraints of networking applications. In software-defined overlay networks, software-defined networking (SDN) paradigm is introduced in the overlay networks to enable centralized and efficient routing of traffic in the overlay networks, thus, enabling better QoS. One of the main challenges in software-defined overlay networks is the fast-changing overlay link QoS characteristics. However, the existing routing algorithms for satisfying multiple QoS constraints in software-defined overlay networks involve high route computation time and thus these routing algorithms cannot adapt to the fast-changing overlay link QoS characteristics. Moreover, as we scale the size of overlay networks, the size of forwarding tables increases exponentially. This is because the existing routing schemes for ensuring multiple QoS constraints use both the source and the destination address for data-plane forwarding. This leads to pushing a huge amount of forwarding table entries by the controller through the network and thus limiting the size of the overlay network. We propose an efficient routing scheme, QROUTE, for satisfying multiple QoS constraints in software-defined overlay networks. QROUTE consists of a control plane routing algorithm which has significantly low route computation time because of employing a novel directed-acyclic-graph (DAG) based approach. QROUTE also reduces the forwarding entries in the data plane by using a QoS-metric-based forwarding scheme. We extensively evaluate QROUTE using traces from a global overlay service provider. We also examine QROUTE on a testbed of P4-BMv2 switches controlled by the ONOS controller using P4Runtime protocol. We find that QROUTE outperforms other state-of-the-art QoS routing schemes in route computation time, size of the forwarding tables and meeting the QoS requirements of various applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QoS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">routing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DAG</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">route computation time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forwarding table size</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QoS-metrics-based forwarding</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi-Li Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 104109-104126</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:104109-104126</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2995558</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0498154131084c07baceff14c05d4c4d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9096304/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">104109-104126</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Nitin Varyani |
spellingShingle |
Nitin Varyani misc TK1-9971 misc QoS misc routing misc DAG misc route computation time misc forwarding table size misc QoS-metrics-based forwarding misc Electrical engineering. Electronics. Nuclear engineering QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks |
authorStr |
Nitin Varyani |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks QoS routing DAG route computation time forwarding table size QoS-metrics-based forwarding |
topic |
misc TK1-9971 misc QoS misc routing misc DAG misc route computation time misc forwarding table size misc QoS-metrics-based forwarding misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc QoS misc routing misc DAG misc route computation time misc forwarding table size misc QoS-metrics-based forwarding misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc QoS misc routing misc DAG misc route computation time misc forwarding table size misc QoS-metrics-based forwarding misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks |
ctrlnum |
(DE-627)DOAJ005076366 (DE-599)DOAJ0498154131084c07baceff14c05d4c4d |
title_full |
QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks |
author_sort |
Nitin Varyani |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
104109 |
author_browse |
Nitin Varyani Zhi-Li Zhang David Dai |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Nitin Varyani |
doi_str_mv |
10.1109/ACCESS.2020.2995558 |
author2-role |
verfasserin |
title_sort |
qroute: an efficient quality of service (qos) routing scheme for software-defined overlay networks |
callnumber |
TK1-9971 |
title_auth |
QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks |
abstract |
Many computer network applications impose constraints for multiple quality of service (QoS) metrics, e.g., delay, packet loss, bandwidth, and jitter. These QoS constraints cannot be guaranteed by the Internet due to its best-effort service model. Overlay networks have been an effective technique at the application layer to support multiple QoS constraints of networking applications. In software-defined overlay networks, software-defined networking (SDN) paradigm is introduced in the overlay networks to enable centralized and efficient routing of traffic in the overlay networks, thus, enabling better QoS. One of the main challenges in software-defined overlay networks is the fast-changing overlay link QoS characteristics. However, the existing routing algorithms for satisfying multiple QoS constraints in software-defined overlay networks involve high route computation time and thus these routing algorithms cannot adapt to the fast-changing overlay link QoS characteristics. Moreover, as we scale the size of overlay networks, the size of forwarding tables increases exponentially. This is because the existing routing schemes for ensuring multiple QoS constraints use both the source and the destination address for data-plane forwarding. This leads to pushing a huge amount of forwarding table entries by the controller through the network and thus limiting the size of the overlay network. We propose an efficient routing scheme, QROUTE, for satisfying multiple QoS constraints in software-defined overlay networks. QROUTE consists of a control plane routing algorithm which has significantly low route computation time because of employing a novel directed-acyclic-graph (DAG) based approach. QROUTE also reduces the forwarding entries in the data plane by using a QoS-metric-based forwarding scheme. We extensively evaluate QROUTE using traces from a global overlay service provider. We also examine QROUTE on a testbed of P4-BMv2 switches controlled by the ONOS controller using P4Runtime protocol. We find that QROUTE outperforms other state-of-the-art QoS routing schemes in route computation time, size of the forwarding tables and meeting the QoS requirements of various applications. |
abstractGer |
Many computer network applications impose constraints for multiple quality of service (QoS) metrics, e.g., delay, packet loss, bandwidth, and jitter. These QoS constraints cannot be guaranteed by the Internet due to its best-effort service model. Overlay networks have been an effective technique at the application layer to support multiple QoS constraints of networking applications. In software-defined overlay networks, software-defined networking (SDN) paradigm is introduced in the overlay networks to enable centralized and efficient routing of traffic in the overlay networks, thus, enabling better QoS. One of the main challenges in software-defined overlay networks is the fast-changing overlay link QoS characteristics. However, the existing routing algorithms for satisfying multiple QoS constraints in software-defined overlay networks involve high route computation time and thus these routing algorithms cannot adapt to the fast-changing overlay link QoS characteristics. Moreover, as we scale the size of overlay networks, the size of forwarding tables increases exponentially. This is because the existing routing schemes for ensuring multiple QoS constraints use both the source and the destination address for data-plane forwarding. This leads to pushing a huge amount of forwarding table entries by the controller through the network and thus limiting the size of the overlay network. We propose an efficient routing scheme, QROUTE, for satisfying multiple QoS constraints in software-defined overlay networks. QROUTE consists of a control plane routing algorithm which has significantly low route computation time because of employing a novel directed-acyclic-graph (DAG) based approach. QROUTE also reduces the forwarding entries in the data plane by using a QoS-metric-based forwarding scheme. We extensively evaluate QROUTE using traces from a global overlay service provider. We also examine QROUTE on a testbed of P4-BMv2 switches controlled by the ONOS controller using P4Runtime protocol. We find that QROUTE outperforms other state-of-the-art QoS routing schemes in route computation time, size of the forwarding tables and meeting the QoS requirements of various applications. |
abstract_unstemmed |
Many computer network applications impose constraints for multiple quality of service (QoS) metrics, e.g., delay, packet loss, bandwidth, and jitter. These QoS constraints cannot be guaranteed by the Internet due to its best-effort service model. Overlay networks have been an effective technique at the application layer to support multiple QoS constraints of networking applications. In software-defined overlay networks, software-defined networking (SDN) paradigm is introduced in the overlay networks to enable centralized and efficient routing of traffic in the overlay networks, thus, enabling better QoS. One of the main challenges in software-defined overlay networks is the fast-changing overlay link QoS characteristics. However, the existing routing algorithms for satisfying multiple QoS constraints in software-defined overlay networks involve high route computation time and thus these routing algorithms cannot adapt to the fast-changing overlay link QoS characteristics. Moreover, as we scale the size of overlay networks, the size of forwarding tables increases exponentially. This is because the existing routing schemes for ensuring multiple QoS constraints use both the source and the destination address for data-plane forwarding. This leads to pushing a huge amount of forwarding table entries by the controller through the network and thus limiting the size of the overlay network. We propose an efficient routing scheme, QROUTE, for satisfying multiple QoS constraints in software-defined overlay networks. QROUTE consists of a control plane routing algorithm which has significantly low route computation time because of employing a novel directed-acyclic-graph (DAG) based approach. QROUTE also reduces the forwarding entries in the data plane by using a QoS-metric-based forwarding scheme. We extensively evaluate QROUTE using traces from a global overlay service provider. We also examine QROUTE on a testbed of P4-BMv2 switches controlled by the ONOS controller using P4Runtime protocol. We find that QROUTE outperforms other state-of-the-art QoS routing schemes in route computation time, size of the forwarding tables and meeting the QoS requirements of various applications. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks |
url |
https://doi.org/10.1109/ACCESS.2020.2995558 https://doaj.org/article/0498154131084c07baceff14c05d4c4d https://ieeexplore.ieee.org/document/9096304/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Zhi-Li Zhang David Dai |
author2Str |
Zhi-Li Zhang David Dai |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.2995558 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T02:14:09.282Z |
_version_ |
1803612847377219584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005076366</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309190734.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2995558</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005076366</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0498154131084c07baceff14c05d4c4d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nitin Varyani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many computer network applications impose constraints for multiple quality of service (QoS) metrics, e.g., delay, packet loss, bandwidth, and jitter. These QoS constraints cannot be guaranteed by the Internet due to its best-effort service model. Overlay networks have been an effective technique at the application layer to support multiple QoS constraints of networking applications. In software-defined overlay networks, software-defined networking (SDN) paradigm is introduced in the overlay networks to enable centralized and efficient routing of traffic in the overlay networks, thus, enabling better QoS. One of the main challenges in software-defined overlay networks is the fast-changing overlay link QoS characteristics. However, the existing routing algorithms for satisfying multiple QoS constraints in software-defined overlay networks involve high route computation time and thus these routing algorithms cannot adapt to the fast-changing overlay link QoS characteristics. Moreover, as we scale the size of overlay networks, the size of forwarding tables increases exponentially. This is because the existing routing schemes for ensuring multiple QoS constraints use both the source and the destination address for data-plane forwarding. This leads to pushing a huge amount of forwarding table entries by the controller through the network and thus limiting the size of the overlay network. We propose an efficient routing scheme, QROUTE, for satisfying multiple QoS constraints in software-defined overlay networks. QROUTE consists of a control plane routing algorithm which has significantly low route computation time because of employing a novel directed-acyclic-graph (DAG) based approach. QROUTE also reduces the forwarding entries in the data plane by using a QoS-metric-based forwarding scheme. We extensively evaluate QROUTE using traces from a global overlay service provider. We also examine QROUTE on a testbed of P4-BMv2 switches controlled by the ONOS controller using P4Runtime protocol. We find that QROUTE outperforms other state-of-the-art QoS routing schemes in route computation time, size of the forwarding tables and meeting the QoS requirements of various applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QoS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">routing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DAG</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">route computation time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forwarding table size</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QoS-metrics-based forwarding</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi-Li Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 104109-104126</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:104109-104126</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2995558</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0498154131084c07baceff14c05d4c4d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9096304/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">104109-104126</subfield></datafield></record></collection>
|
score |
7.3986883 |