A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods
In recent years, marine exploration has become one of the most popular research subjects. At present, gliders in Underwater Acoustic Sensor Networks (UASNs) are equipped with a variety of sensors, which can play an important role in marine detection and monitoring. In addition, gliders also have the...
Ausführliche Beschreibung
Autor*in: |
Yishan Su [verfasserIn] Lin Zhang [verfasserIn] Yun Li [verfasserIn] Xing Yao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 154560-154572 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:154560-154572 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.3015856 |
---|
Katalog-ID: |
DOAJ005085608 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ005085608 | ||
003 | DE-627 | ||
005 | 20230309190811.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.3015856 |2 doi | |
035 | |a (DE-627)DOAJ005085608 | ||
035 | |a (DE-599)DOAJ05f6dcd084a04fa28f3fc1ce71d9f377 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Yishan Su |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In recent years, marine exploration has become one of the most popular research subjects. At present, gliders in Underwater Acoustic Sensor Networks (UASNs) are equipped with a variety of sensors, which can play an important role in marine detection and monitoring. In addition, gliders also have the ability of data collection and storage. When coexisting with the sensor nodes, they can be regarded as special sensor nodes with semi-determined sawtooth trajectories. In hybrid UASNs including sensor nodes and gliders, a robust routing protocol is required to improve the poor network connectivity caused by long transmission delay, high bit error rate and unreliable transmission links. In this article, the Fuzzy Logic Algorithm (FLA) is used to convert multiple input parameters into one output value, thus reducing the storage burden of the network. Therefore, a glider-assist routing scheme with trajectory prediction is proposed to improve the connectivity of the hybrid network. The simulation results show that our scheme is superior to other protocols in terms of delivery ratio, end-to-end latency and lifetime. | ||
650 | 4 | |a Hybrid underwater acoustic sensor network | |
650 | 4 | |a routing protocol | |
650 | 4 | |a fuzzy logic algorithm | |
650 | 4 | |a Kalman filtering | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Lin Zhang |e verfasserin |4 aut | |
700 | 0 | |a Yun Li |e verfasserin |4 aut | |
700 | 0 | |a Xing Yao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 154560-154572 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:154560-154572 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.3015856 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/05f6dcd084a04fa28f3fc1ce71d9f377 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9165057/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 154560-154572 |
author_variant |
y s ys l z lz y l yl x y xy |
---|---|
matchkey_str |
article:21693536:2020----::gieassruigrtcloudraeaosintokwttae |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.3015856 doi (DE-627)DOAJ005085608 (DE-599)DOAJ05f6dcd084a04fa28f3fc1ce71d9f377 DE-627 ger DE-627 rakwb eng TK1-9971 Yishan Su verfasserin aut A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, marine exploration has become one of the most popular research subjects. At present, gliders in Underwater Acoustic Sensor Networks (UASNs) are equipped with a variety of sensors, which can play an important role in marine detection and monitoring. In addition, gliders also have the ability of data collection and storage. When coexisting with the sensor nodes, they can be regarded as special sensor nodes with semi-determined sawtooth trajectories. In hybrid UASNs including sensor nodes and gliders, a robust routing protocol is required to improve the poor network connectivity caused by long transmission delay, high bit error rate and unreliable transmission links. In this article, the Fuzzy Logic Algorithm (FLA) is used to convert multiple input parameters into one output value, thus reducing the storage burden of the network. Therefore, a glider-assist routing scheme with trajectory prediction is proposed to improve the connectivity of the hybrid network. The simulation results show that our scheme is superior to other protocols in terms of delivery ratio, end-to-end latency and lifetime. Hybrid underwater acoustic sensor network routing protocol fuzzy logic algorithm Kalman filtering Electrical engineering. Electronics. Nuclear engineering Lin Zhang verfasserin aut Yun Li verfasserin aut Xing Yao verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 154560-154572 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:154560-154572 https://doi.org/10.1109/ACCESS.2020.3015856 kostenfrei https://doaj.org/article/05f6dcd084a04fa28f3fc1ce71d9f377 kostenfrei https://ieeexplore.ieee.org/document/9165057/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 154560-154572 |
spelling |
10.1109/ACCESS.2020.3015856 doi (DE-627)DOAJ005085608 (DE-599)DOAJ05f6dcd084a04fa28f3fc1ce71d9f377 DE-627 ger DE-627 rakwb eng TK1-9971 Yishan Su verfasserin aut A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, marine exploration has become one of the most popular research subjects. At present, gliders in Underwater Acoustic Sensor Networks (UASNs) are equipped with a variety of sensors, which can play an important role in marine detection and monitoring. In addition, gliders also have the ability of data collection and storage. When coexisting with the sensor nodes, they can be regarded as special sensor nodes with semi-determined sawtooth trajectories. In hybrid UASNs including sensor nodes and gliders, a robust routing protocol is required to improve the poor network connectivity caused by long transmission delay, high bit error rate and unreliable transmission links. In this article, the Fuzzy Logic Algorithm (FLA) is used to convert multiple input parameters into one output value, thus reducing the storage burden of the network. Therefore, a glider-assist routing scheme with trajectory prediction is proposed to improve the connectivity of the hybrid network. The simulation results show that our scheme is superior to other protocols in terms of delivery ratio, end-to-end latency and lifetime. Hybrid underwater acoustic sensor network routing protocol fuzzy logic algorithm Kalman filtering Electrical engineering. Electronics. Nuclear engineering Lin Zhang verfasserin aut Yun Li verfasserin aut Xing Yao verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 154560-154572 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:154560-154572 https://doi.org/10.1109/ACCESS.2020.3015856 kostenfrei https://doaj.org/article/05f6dcd084a04fa28f3fc1ce71d9f377 kostenfrei https://ieeexplore.ieee.org/document/9165057/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 154560-154572 |
allfields_unstemmed |
10.1109/ACCESS.2020.3015856 doi (DE-627)DOAJ005085608 (DE-599)DOAJ05f6dcd084a04fa28f3fc1ce71d9f377 DE-627 ger DE-627 rakwb eng TK1-9971 Yishan Su verfasserin aut A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, marine exploration has become one of the most popular research subjects. At present, gliders in Underwater Acoustic Sensor Networks (UASNs) are equipped with a variety of sensors, which can play an important role in marine detection and monitoring. In addition, gliders also have the ability of data collection and storage. When coexisting with the sensor nodes, they can be regarded as special sensor nodes with semi-determined sawtooth trajectories. In hybrid UASNs including sensor nodes and gliders, a robust routing protocol is required to improve the poor network connectivity caused by long transmission delay, high bit error rate and unreliable transmission links. In this article, the Fuzzy Logic Algorithm (FLA) is used to convert multiple input parameters into one output value, thus reducing the storage burden of the network. Therefore, a glider-assist routing scheme with trajectory prediction is proposed to improve the connectivity of the hybrid network. The simulation results show that our scheme is superior to other protocols in terms of delivery ratio, end-to-end latency and lifetime. Hybrid underwater acoustic sensor network routing protocol fuzzy logic algorithm Kalman filtering Electrical engineering. Electronics. Nuclear engineering Lin Zhang verfasserin aut Yun Li verfasserin aut Xing Yao verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 154560-154572 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:154560-154572 https://doi.org/10.1109/ACCESS.2020.3015856 kostenfrei https://doaj.org/article/05f6dcd084a04fa28f3fc1ce71d9f377 kostenfrei https://ieeexplore.ieee.org/document/9165057/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 154560-154572 |
allfieldsGer |
10.1109/ACCESS.2020.3015856 doi (DE-627)DOAJ005085608 (DE-599)DOAJ05f6dcd084a04fa28f3fc1ce71d9f377 DE-627 ger DE-627 rakwb eng TK1-9971 Yishan Su verfasserin aut A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, marine exploration has become one of the most popular research subjects. At present, gliders in Underwater Acoustic Sensor Networks (UASNs) are equipped with a variety of sensors, which can play an important role in marine detection and monitoring. In addition, gliders also have the ability of data collection and storage. When coexisting with the sensor nodes, they can be regarded as special sensor nodes with semi-determined sawtooth trajectories. In hybrid UASNs including sensor nodes and gliders, a robust routing protocol is required to improve the poor network connectivity caused by long transmission delay, high bit error rate and unreliable transmission links. In this article, the Fuzzy Logic Algorithm (FLA) is used to convert multiple input parameters into one output value, thus reducing the storage burden of the network. Therefore, a glider-assist routing scheme with trajectory prediction is proposed to improve the connectivity of the hybrid network. The simulation results show that our scheme is superior to other protocols in terms of delivery ratio, end-to-end latency and lifetime. Hybrid underwater acoustic sensor network routing protocol fuzzy logic algorithm Kalman filtering Electrical engineering. Electronics. Nuclear engineering Lin Zhang verfasserin aut Yun Li verfasserin aut Xing Yao verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 154560-154572 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:154560-154572 https://doi.org/10.1109/ACCESS.2020.3015856 kostenfrei https://doaj.org/article/05f6dcd084a04fa28f3fc1ce71d9f377 kostenfrei https://ieeexplore.ieee.org/document/9165057/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 154560-154572 |
allfieldsSound |
10.1109/ACCESS.2020.3015856 doi (DE-627)DOAJ005085608 (DE-599)DOAJ05f6dcd084a04fa28f3fc1ce71d9f377 DE-627 ger DE-627 rakwb eng TK1-9971 Yishan Su verfasserin aut A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, marine exploration has become one of the most popular research subjects. At present, gliders in Underwater Acoustic Sensor Networks (UASNs) are equipped with a variety of sensors, which can play an important role in marine detection and monitoring. In addition, gliders also have the ability of data collection and storage. When coexisting with the sensor nodes, they can be regarded as special sensor nodes with semi-determined sawtooth trajectories. In hybrid UASNs including sensor nodes and gliders, a robust routing protocol is required to improve the poor network connectivity caused by long transmission delay, high bit error rate and unreliable transmission links. In this article, the Fuzzy Logic Algorithm (FLA) is used to convert multiple input parameters into one output value, thus reducing the storage burden of the network. Therefore, a glider-assist routing scheme with trajectory prediction is proposed to improve the connectivity of the hybrid network. The simulation results show that our scheme is superior to other protocols in terms of delivery ratio, end-to-end latency and lifetime. Hybrid underwater acoustic sensor network routing protocol fuzzy logic algorithm Kalman filtering Electrical engineering. Electronics. Nuclear engineering Lin Zhang verfasserin aut Yun Li verfasserin aut Xing Yao verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 154560-154572 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:154560-154572 https://doi.org/10.1109/ACCESS.2020.3015856 kostenfrei https://doaj.org/article/05f6dcd084a04fa28f3fc1ce71d9f377 kostenfrei https://ieeexplore.ieee.org/document/9165057/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 154560-154572 |
language |
English |
source |
In IEEE Access 8(2020), Seite 154560-154572 volume:8 year:2020 pages:154560-154572 |
sourceStr |
In IEEE Access 8(2020), Seite 154560-154572 volume:8 year:2020 pages:154560-154572 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hybrid underwater acoustic sensor network routing protocol fuzzy logic algorithm Kalman filtering Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Yishan Su @@aut@@ Lin Zhang @@aut@@ Yun Li @@aut@@ Xing Yao @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ005085608 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005085608</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309190811.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3015856</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005085608</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ05f6dcd084a04fa28f3fc1ce71d9f377</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yishan Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years, marine exploration has become one of the most popular research subjects. At present, gliders in Underwater Acoustic Sensor Networks (UASNs) are equipped with a variety of sensors, which can play an important role in marine detection and monitoring. In addition, gliders also have the ability of data collection and storage. When coexisting with the sensor nodes, they can be regarded as special sensor nodes with semi-determined sawtooth trajectories. In hybrid UASNs including sensor nodes and gliders, a robust routing protocol is required to improve the poor network connectivity caused by long transmission delay, high bit error rate and unreliable transmission links. In this article, the Fuzzy Logic Algorithm (FLA) is used to convert multiple input parameters into one output value, thus reducing the storage burden of the network. Therefore, a glider-assist routing scheme with trajectory prediction is proposed to improve the connectivity of the hybrid network. The simulation results show that our scheme is superior to other protocols in terms of delivery ratio, end-to-end latency and lifetime.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid underwater acoustic sensor network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">routing protocol</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuzzy logic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kalman filtering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xing Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 154560-154572</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:154560-154572</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3015856</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/05f6dcd084a04fa28f3fc1ce71d9f377</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9165057/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">154560-154572</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yishan Su |
spellingShingle |
Yishan Su misc TK1-9971 misc Hybrid underwater acoustic sensor network misc routing protocol misc fuzzy logic algorithm misc Kalman filtering misc Electrical engineering. Electronics. Nuclear engineering A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods |
authorStr |
Yishan Su |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods Hybrid underwater acoustic sensor network routing protocol fuzzy logic algorithm Kalman filtering |
topic |
misc TK1-9971 misc Hybrid underwater acoustic sensor network misc routing protocol misc fuzzy logic algorithm misc Kalman filtering misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Hybrid underwater acoustic sensor network misc routing protocol misc fuzzy logic algorithm misc Kalman filtering misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Hybrid underwater acoustic sensor network misc routing protocol misc fuzzy logic algorithm misc Kalman filtering misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods |
ctrlnum |
(DE-627)DOAJ005085608 (DE-599)DOAJ05f6dcd084a04fa28f3fc1ce71d9f377 |
title_full |
A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods |
author_sort |
Yishan Su |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
154560 |
author_browse |
Yishan Su Lin Zhang Yun Li Xing Yao |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Yishan Su |
doi_str_mv |
10.1109/ACCESS.2020.3015856 |
author2-role |
verfasserin |
title_sort |
glider-assist routing protocol for underwater acoustic networks with trajectory prediction methods |
callnumber |
TK1-9971 |
title_auth |
A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods |
abstract |
In recent years, marine exploration has become one of the most popular research subjects. At present, gliders in Underwater Acoustic Sensor Networks (UASNs) are equipped with a variety of sensors, which can play an important role in marine detection and monitoring. In addition, gliders also have the ability of data collection and storage. When coexisting with the sensor nodes, they can be regarded as special sensor nodes with semi-determined sawtooth trajectories. In hybrid UASNs including sensor nodes and gliders, a robust routing protocol is required to improve the poor network connectivity caused by long transmission delay, high bit error rate and unreliable transmission links. In this article, the Fuzzy Logic Algorithm (FLA) is used to convert multiple input parameters into one output value, thus reducing the storage burden of the network. Therefore, a glider-assist routing scheme with trajectory prediction is proposed to improve the connectivity of the hybrid network. The simulation results show that our scheme is superior to other protocols in terms of delivery ratio, end-to-end latency and lifetime. |
abstractGer |
In recent years, marine exploration has become one of the most popular research subjects. At present, gliders in Underwater Acoustic Sensor Networks (UASNs) are equipped with a variety of sensors, which can play an important role in marine detection and monitoring. In addition, gliders also have the ability of data collection and storage. When coexisting with the sensor nodes, they can be regarded as special sensor nodes with semi-determined sawtooth trajectories. In hybrid UASNs including sensor nodes and gliders, a robust routing protocol is required to improve the poor network connectivity caused by long transmission delay, high bit error rate and unreliable transmission links. In this article, the Fuzzy Logic Algorithm (FLA) is used to convert multiple input parameters into one output value, thus reducing the storage burden of the network. Therefore, a glider-assist routing scheme with trajectory prediction is proposed to improve the connectivity of the hybrid network. The simulation results show that our scheme is superior to other protocols in terms of delivery ratio, end-to-end latency and lifetime. |
abstract_unstemmed |
In recent years, marine exploration has become one of the most popular research subjects. At present, gliders in Underwater Acoustic Sensor Networks (UASNs) are equipped with a variety of sensors, which can play an important role in marine detection and monitoring. In addition, gliders also have the ability of data collection and storage. When coexisting with the sensor nodes, they can be regarded as special sensor nodes with semi-determined sawtooth trajectories. In hybrid UASNs including sensor nodes and gliders, a robust routing protocol is required to improve the poor network connectivity caused by long transmission delay, high bit error rate and unreliable transmission links. In this article, the Fuzzy Logic Algorithm (FLA) is used to convert multiple input parameters into one output value, thus reducing the storage burden of the network. Therefore, a glider-assist routing scheme with trajectory prediction is proposed to improve the connectivity of the hybrid network. The simulation results show that our scheme is superior to other protocols in terms of delivery ratio, end-to-end latency and lifetime. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods |
url |
https://doi.org/10.1109/ACCESS.2020.3015856 https://doaj.org/article/05f6dcd084a04fa28f3fc1ce71d9f377 https://ieeexplore.ieee.org/document/9165057/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Lin Zhang Yun Li Xing Yao |
author2Str |
Lin Zhang Yun Li Xing Yao |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.3015856 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T02:16:09.283Z |
_version_ |
1803612973209485312 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005085608</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309190811.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3015856</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005085608</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ05f6dcd084a04fa28f3fc1ce71d9f377</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yishan Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Glider-Assist Routing Protocol for Underwater Acoustic Networks With Trajectory Prediction Methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years, marine exploration has become one of the most popular research subjects. At present, gliders in Underwater Acoustic Sensor Networks (UASNs) are equipped with a variety of sensors, which can play an important role in marine detection and monitoring. In addition, gliders also have the ability of data collection and storage. When coexisting with the sensor nodes, they can be regarded as special sensor nodes with semi-determined sawtooth trajectories. In hybrid UASNs including sensor nodes and gliders, a robust routing protocol is required to improve the poor network connectivity caused by long transmission delay, high bit error rate and unreliable transmission links. In this article, the Fuzzy Logic Algorithm (FLA) is used to convert multiple input parameters into one output value, thus reducing the storage burden of the network. Therefore, a glider-assist routing scheme with trajectory prediction is proposed to improve the connectivity of the hybrid network. The simulation results show that our scheme is superior to other protocols in terms of delivery ratio, end-to-end latency and lifetime.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid underwater acoustic sensor network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">routing protocol</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuzzy logic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kalman filtering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xing Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 154560-154572</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:154560-154572</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3015856</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/05f6dcd084a04fa28f3fc1ce71d9f377</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9165057/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">154560-154572</subfield></datafield></record></collection>
|
score |
7.4031916 |